The pretreatment of refractory polyvinyl-alcohol (PVA) wastewater with low value of CODcr by Fenton's reagent was investigated to enhance the biodegradabilily. The effects of operating conditions such as pH of the ...The pretreatment of refractory polyvinyl-alcohol (PVA) wastewater with low value of CODcr by Fenton's reagent was investigated to enhance the biodegradabilily. The effects of operating conditions such as pH of the solution, Fe2+ dosage, H2O2 dosage, reaction time and initial PVA concentration on the removal efficiency of CODCr were discussed. It is demonstrated that the optimum value of pH for removal of CODcr is 5 and the most suitable dosages of H2O2 (2%) and FeSO4 (10 mg/L) are 5% and 8.0%, respectively. When the initial CODcr value of the PVA water is 760 mg/L, the favorable reaction time is 110 min. Under these optimum conditions, the removal ratio of CODcr is 58.6% 61.4%, and the value of biodegradability (CODB/CODcr) increases markedly from 8.9% 9.7% to 62.6% 68.3%.展开更多
基金Project(08JCYBJC02600) supported by the Natural Science Foundation of Tianjin,ChinaProject(2008ZX07314-005-011) supported by the National Major Technological Program of China
文摘The pretreatment of refractory polyvinyl-alcohol (PVA) wastewater with low value of CODcr by Fenton's reagent was investigated to enhance the biodegradabilily. The effects of operating conditions such as pH of the solution, Fe2+ dosage, H2O2 dosage, reaction time and initial PVA concentration on the removal efficiency of CODCr were discussed. It is demonstrated that the optimum value of pH for removal of CODcr is 5 and the most suitable dosages of H2O2 (2%) and FeSO4 (10 mg/L) are 5% and 8.0%, respectively. When the initial CODcr value of the PVA water is 760 mg/L, the favorable reaction time is 110 min. Under these optimum conditions, the removal ratio of CODcr is 58.6% 61.4%, and the value of biodegradability (CODB/CODcr) increases markedly from 8.9% 9.7% to 62.6% 68.3%.