[ Objective ] The study aimed to discuss the optimal conditions for the treatment of enzymolysis wastewater by centrifugation - coagu- lation - Fenton reagent oxidation - adsorption process. [ Metbod] According to the...[ Objective ] The study aimed to discuss the optimal conditions for the treatment of enzymolysis wastewater by centrifugation - coagu- lation - Fenton reagent oxidation - adsorption process. [ Metbod] According to the water-quality characteristics of wastewater from a heparin so- dium production factory of Jiangsu Province, enzymolysis wastewater was segregated from intestinal lavage wastewater and treated through cen- trifugation- coagulation- Fenton reagent oxidation-adsorption process, and the optimal technical parameters were determined. E Resultl After enzymolysis wastewater was centrifuged at a speed of 4 000 rpm, 0.6 g/L CTS as the coagulant was added to the supematant. Hereafter, pH of the coagulated effluent was adjusted to 3, and then 1.5% (V/V) H2O2 was added to the coagulated effluent; a certain amount of ferrous sul- fate (n H2O2-.n FeSO4 . 7H2O =8:1 ) was added to the mixture; the reaction conducted for 30 min, and then solution pH was adjusted to about 9. Finally, the oxidized effluent flowed through a resin red until the adsorptive capacity reached 240 BV, and COD of the effluent water was lower than 100 mg/L, meeting the Grade-I standard of Comprehensive Discharge Standard of Sewage (GB8978-1996). [Condusio] The research could provide a new process for the treatment of enzymolysis wastewater.展开更多
A novel plasmonic photo‐Fenton catalyst of Ag/AgCl/Fe‐S was synthesized by ion exchange and photoreduction methods.The obtained catalyst was characterized by X‐ray diffraction,X‐ray photoelectron spectroscopy,scan...A novel plasmonic photo‐Fenton catalyst of Ag/AgCl/Fe‐S was synthesized by ion exchange and photoreduction methods.The obtained catalyst was characterized by X‐ray diffraction,X‐ray photoelectron spectroscopy,scanning electron microscope imaging,and Brunauer‐Emmett‐Teller measurements.Moreover,the photocatalytic activity of Ag/AgCl/Fe‐S was investigated for its degradation activity towards bisphenol A(BPA)as target pollutant under visible light irradiation.The effects of H2O2concentration,pH value,illumination intensity,and catalyst dosage on BPA degradation were examined.Our results indicated that the Ag/AgCl material was successfully loaded onto Fe‐sepiolite and showed a high photocatalytic activity under illumination by visible light.Furthermore,active species capture experiments were performed to explore the photocatalytic mechanism of the Ag/AgCl/Fe‐S in this heterogeneous photo‐Fenton process,where the major active species included hydroxyl radicals(?OH)and holes(h+).展开更多
The pretreatment of refractory polyvinyl-alcohol (PVA) wastewater with low value of CODcr by Fenton's reagent was investigated to enhance the biodegradabilily. The effects of operating conditions such as pH of the ...The pretreatment of refractory polyvinyl-alcohol (PVA) wastewater with low value of CODcr by Fenton's reagent was investigated to enhance the biodegradabilily. The effects of operating conditions such as pH of the solution, Fe2+ dosage, H2O2 dosage, reaction time and initial PVA concentration on the removal efficiency of CODCr were discussed. It is demonstrated that the optimum value of pH for removal of CODcr is 5 and the most suitable dosages of H2O2 (2%) and FeSO4 (10 mg/L) are 5% and 8.0%, respectively. When the initial CODcr value of the PVA water is 760 mg/L, the favorable reaction time is 110 min. Under these optimum conditions, the removal ratio of CODcr is 58.6% 61.4%, and the value of biodegradability (CODB/CODcr) increases markedly from 8.9% 9.7% to 62.6% 68.3%.展开更多
The advanced treatment using integrated Fenton's reaction and coagulation process was investigated in this study. Before the advancement, the pharmaceutical wastewater containing lincomycin hydrochloride was pretreat...The advanced treatment using integrated Fenton's reaction and coagulation process was investigated in this study. Before the advancement, the pharmaceutical wastewater containing lincomycin hydrochloride was pretreated by UASB (upflow anaerobic sludge bed) and a SBR (sequencing batch reactor) process. The residual recalcitrant compounds, measured by gas chromatographymass spectrometry (GC-MS), mainly consisted of alcohols, phenols, and nitrogenous and sulfur compounds. The experimental results indicated that when the Fenton's reaction was conducted at pH=3.0, H2O2CODOcr=0.27, H2O2/Fe^2+=3:1 and 30 min of reaction time, and the coagulation process operated at a sulfate aluminum concentration of 800 mg/L and pH value of 5.0, the color and COD in the wastewater decreased by 94% and 73%, respectively; with a finale COD concentration of 267 mg/L and color level of 40 units, meeting the secondary standard of GB8978-1996 for industrial wastewater.展开更多
High strength refractory organic stream is produced during the production of 2-phenylamino-3-methyl-6-di-n-butylaminofluoran (One Dye Black 2, abbr. ODB 2), a novel heat-sensitive material with a promising market. I...High strength refractory organic stream is produced during the production of 2-phenylamino-3-methyl-6-di-n-butylaminofluoran (One Dye Black 2, abbr. ODB 2), a novel heat-sensitive material with a promising market. In this study, a combination of acidificationprecipitation, primary biological treatment, Fenton's oxidation and another biological treatment was successfully used for the removal of COD from 18000-25000 mg/L to below 200 mg/L from the ODB 2 production wastewater in a pilot experiment. A COD removal of 70%-80% was achieved by acidification-precipitation under a pH of 2.5-3.0. The first step biodegradafion permitted an average COD removal of 70% under an hydraulic residence time (HRT) of 30 h. By batch tests, the optimum conditions of Fenton's oxidation were acquired as: Fe^2+ dose 6.0 mmol/L; H2O2 dose 3000 mg/L; and reaction time 6 h. The second step biological treatment could ensure an effluent COD below 200 mg/L under an HRT of 10 h following the Fenton's treatment.展开更多
Fenton's reagent was employed to treat the wastewater containing RDX.The effects of FeSO4 concentration,H2O2 concentration,pH value,reaction time,temperature and initial COD of wastewater on residual COD of wastew...Fenton's reagent was employed to treat the wastewater containing RDX.The effects of FeSO4 concentration,H2O2 concentration,pH value,reaction time,temperature and initial COD of wastewater on residual COD of wastewater were investigated.The results show that the optimum FeSO4 concentration and pH are 700 mg/L and 2.5,respectively,and the residual COD of wastewater decreases with the rise in H2O2 concentration,but increases with the rise in temperature.After Fenton's reagent treatment,the initial COD of less than 874 mg/L wastewater can meet effluent standard.Under conditions of 100 mg/L H2O2,437 mg/L initial COD and 15 ℃ temperature,the lowest residual COD is obtained at 83.80 mg/L in 5 min.展开更多
In this work, the degradation of 2-chloro-4,6-diamino-1,3,5-triazine in aqueous solutions by photo-Fenton process has been investigated. The preliminary results have shown that the degradation of 2-chloro-4,6-diamino-...In this work, the degradation of 2-chloro-4,6-diamino-1,3,5-triazine in aqueous solutions by photo-Fenton process has been investigated. The preliminary results have shown that the degradation of 2-chloro-4,6-diamino-1,3,5-triazine by photo-Fenton process is more rapid and more effective than Fenton and UV/H2O2 processes. The effects of certain experimental parameters on kinetics and efficiency of the degradation of 2-chloro-4,6,-diamino-1,3,5-triazine by photo-Fenton process, have been evaluated. Under optimal conditions, photo-Fenton process achieved more than 90% of chloride release and about 30% of nitrate formation. The results of total organic carbon (TOC) and total Kjeldahl nitrogen (TKN) analyses have shown that no carbon dioxide and ammonia are formed during photo-Fenton treatment of aqueous solutions containing 40 mg/L triazine. These results indicate that only substituent groups of triazine ring are released;however, nitrogen atoms of triazine ring remain unaffected. A simple mechanism of degradation of 2-chloro-4,6-diamino-1,3,5-triazine has been proposed. The degradation starts by a rapid release of chlorine atoms as chloride ions to form 2-hydroxy-4,6-diamino-1,3,5-triazine. The amino groups of 2-hydroxy-4,6-diamino-1,3,5-triazine undergo are oxidized into nitro groups by hydroxyl radicals to form 2-hydroxy-4,6-dinitro-1,3,5-triazine which undergoes a slow release of nitro groups and their substitution with hydroxyl groups to form cyanuric acid and nitrate ions. The degradation of cyanuric acid by photo-Fenton process has also been investigated. The results of TOC and TKN analyzes show that no carbon dioxide is formed during the treatment.展开更多
Gaskets are applied in PEMFCs(proton exchange membrane fuel cells) to keep reactant gases and liquid within their respective regions, which are of great significance for the both sealing and electrochemical performa...Gaskets are applied in PEMFCs(proton exchange membrane fuel cells) to keep reactant gases and liquid within their respective regions, which are of great significance for the both sealing and electrochemical performance of fuel cells during the long-term operation. In this study, the degradation of silicone rubbers, often selected as seals in PEMFCs, in Fenton's reagents with different H_2O_2 concentrations was investigated. The changes in chemical properties, mechanical behavior and surface morphology of the samples were studied before and after exposure to the test environment over time. It is found that increasing H_2O_2 concentration will degrade the rubbers more severely. The experimental results elucidate the degradation mechanism of silicone rubbers in Fenton's reagents and the influence of H_2O_2 in the degradation process.展开更多
Ethylenediaminetetraacetic acid (EDTA) is a chelating agent that has been used for decontamination purposes in nuclear industry. The presence of EDTA in decontamination wastes can cause complexation of the cations res...Ethylenediaminetetraacetic acid (EDTA) is a chelating agent that has been used for decontamination purposes in nuclear industry. The presence of EDTA in decontamination wastes can cause complexation of the cations resulting into interferences in their removal by various treatment processes such as chemical precipitation, ion exchange etc. Further, it might also impart elevated leachability of cationic contaminants from the conditioned wastes immobilized in cement or other matrices and can negatively influence the quality of the final form of waste. In the present study, kinetics of degradation of EDTA (20,000 mg/l) by employing either Photo-Fenton process using UV (15 W λmax = 253.7 nm) or Sono-Fenton process using ultrasound at 130 KHz or simultaneous Sono-Photo Fenton process has been investigated. EDTA is effectively degraded by the synergistic effect of both Photo Fenton and Sono Fenton process. All the above mentioned processes were found to follow a first order kinetics reaction. From the observed pH changes during the oxidation processes, it can be concluded that there is a loss of chelating ability of EDTA. Formation of amides was con- firmed during the degradation processes.展开更多
Kinetics of homogeneous degradation of Eosin Y (EY), also known as Acid red 87 (CI 45380), are studied, mostly using Fenton’s process, at 30℃ by monitoring its absorbance at 517 nm (λ<sub>max</sub> of E...Kinetics of homogeneous degradation of Eosin Y (EY), also known as Acid red 87 (CI 45380), are studied, mostly using Fenton’s process, at 30℃ by monitoring its absorbance at 517 nm (λ<sub>max</sub> of EY). This process is one of the advanced oxidation processes (AOPs). Mixture of H<sub>2</sub>O<sub>2</sub> and Fe(II) ion in acetate buffer medium (pH 2.74 - 4.56) generates hydroxyl free radicals (?OH) which attack the dye molecules, resulting in degradation of the dye molecules. Results show that the initial rate of EY degradation decreases with the increasing of solution pH because of removal of kinetically important Fe (iron) species through formation of ferric hydroxide. On the other hand, the rate increases with increasing the concentrations of H<sub>2</sub>O<sub>2</sub>, Fe(II) and EY at low solution pH. The initial rate increases with increasing of concentration of H2O2 and, subsequently remains unaffected with further increase of its concentration at a constant Fe(II) concentration because of the enhanced scavenging environment created by H<sub>2</sub>O<sub>2</sub> at its higher concentration. The initial rate also increases with increasing of concentration of Fe(II) at a constant H<sub>2</sub>O<sub>2</sub> concentration and remains unaffected with its further increase. EY concentration also enhances the initial rate at low pH. However, the initial rate is significantly enhanced by UV light. This is because of formation of additional hydroxyl radicals through excitation of the dye molecules by UV light. During the period of experiment, EY in aqueous solution alone hardly suffered any degradation. Degradation mechanism of EY by the Fenton and photo-Fenton’s processes is also discussed. Statistical analysis was used to validate the experimental results. Low values of the standard deviation for both the initial rate and % degradation indicated the consistency of the experimental data.展开更多
The experiments focused on the Fenton treatment of humic substances(HS) in concentrated landfill leachate rejected by reverse osmosis(RO).The changes in dissolved organic matter by oxidation/coagulation were assessed ...The experiments focused on the Fenton treatment of humic substances(HS) in concentrated landfill leachate rejected by reverse osmosis(RO).The changes in dissolved organic matter by oxidation/coagulation were assessed by using gross organic parameters such as chemical oxygen demand(COD),total organic carbon(TOC),UV254 and COD/TOC molar ratio during the treatment with Fenton reagent.The results demonstrated that the humic substances removal efficiency(from 11.9% to 89.5%) was higher than that of COD(from 9.6% to 75.2%) and there was a good correlation between humic substances degradation and COD removal.This study showed that the oxidation efficiency controlled the coagulation efficiency,so high oxidation efficiency may cause relatively low coagulation.The change of(COD/TOC)oxid indicated that the oxidation reaction was ultimate degradation under the condition of pH= 2.0—4.0,>80 mmol·L-1,= 40—160 mmol·L-1,reaction time 2 h.The changes of(COD/TOC)coag illustrated that the oxidation state of the organic matter removed by coagulation was significantly higher than in the fresh landfill leachate under the above reaction conditions.展开更多
基金Supported by the Project of Practical Innovation Training Program of Undergraduates in Jiangsu Province in 2012(232)Project of Visiting Engineers of Nanjing College of Chemical Technology in 2012
文摘[ Objective ] The study aimed to discuss the optimal conditions for the treatment of enzymolysis wastewater by centrifugation - coagu- lation - Fenton reagent oxidation - adsorption process. [ Metbod] According to the water-quality characteristics of wastewater from a heparin so- dium production factory of Jiangsu Province, enzymolysis wastewater was segregated from intestinal lavage wastewater and treated through cen- trifugation- coagulation- Fenton reagent oxidation-adsorption process, and the optimal technical parameters were determined. E Resultl After enzymolysis wastewater was centrifuged at a speed of 4 000 rpm, 0.6 g/L CTS as the coagulant was added to the supematant. Hereafter, pH of the coagulated effluent was adjusted to 3, and then 1.5% (V/V) H2O2 was added to the coagulated effluent; a certain amount of ferrous sul- fate (n H2O2-.n FeSO4 . 7H2O =8:1 ) was added to the mixture; the reaction conducted for 30 min, and then solution pH was adjusted to about 9. Finally, the oxidized effluent flowed through a resin red until the adsorptive capacity reached 240 BV, and COD of the effluent water was lower than 100 mg/L, meeting the Grade-I standard of Comprehensive Discharge Standard of Sewage (GB8978-1996). [Condusio] The research could provide a new process for the treatment of enzymolysis wastewater.
基金supported by the National Natural Science Foundation of China(41573118)Research Foundation of Education Bureau of Hunan Province,China(14B177)Special Project of Xiangtan University~~
文摘A novel plasmonic photo‐Fenton catalyst of Ag/AgCl/Fe‐S was synthesized by ion exchange and photoreduction methods.The obtained catalyst was characterized by X‐ray diffraction,X‐ray photoelectron spectroscopy,scanning electron microscope imaging,and Brunauer‐Emmett‐Teller measurements.Moreover,the photocatalytic activity of Ag/AgCl/Fe‐S was investigated for its degradation activity towards bisphenol A(BPA)as target pollutant under visible light irradiation.The effects of H2O2concentration,pH value,illumination intensity,and catalyst dosage on BPA degradation were examined.Our results indicated that the Ag/AgCl material was successfully loaded onto Fe‐sepiolite and showed a high photocatalytic activity under illumination by visible light.Furthermore,active species capture experiments were performed to explore the photocatalytic mechanism of the Ag/AgCl/Fe‐S in this heterogeneous photo‐Fenton process,where the major active species included hydroxyl radicals(?OH)and holes(h+).
基金Project(08JCYBJC02600) supported by the Natural Science Foundation of Tianjin,ChinaProject(2008ZX07314-005-011) supported by the National Major Technological Program of China
文摘The pretreatment of refractory polyvinyl-alcohol (PVA) wastewater with low value of CODcr by Fenton's reagent was investigated to enhance the biodegradabilily. The effects of operating conditions such as pH of the solution, Fe2+ dosage, H2O2 dosage, reaction time and initial PVA concentration on the removal efficiency of CODCr were discussed. It is demonstrated that the optimum value of pH for removal of CODcr is 5 and the most suitable dosages of H2O2 (2%) and FeSO4 (10 mg/L) are 5% and 8.0%, respectively. When the initial CODcr value of the PVA water is 760 mg/L, the favorable reaction time is 110 min. Under these optimum conditions, the removal ratio of CODcr is 58.6% 61.4%, and the value of biodegradability (CODB/CODcr) increases markedly from 8.9% 9.7% to 62.6% 68.3%.
文摘The advanced treatment using integrated Fenton's reaction and coagulation process was investigated in this study. Before the advancement, the pharmaceutical wastewater containing lincomycin hydrochloride was pretreated by UASB (upflow anaerobic sludge bed) and a SBR (sequencing batch reactor) process. The residual recalcitrant compounds, measured by gas chromatographymass spectrometry (GC-MS), mainly consisted of alcohols, phenols, and nitrogenous and sulfur compounds. The experimental results indicated that when the Fenton's reaction was conducted at pH=3.0, H2O2CODOcr=0.27, H2O2/Fe^2+=3:1 and 30 min of reaction time, and the coagulation process operated at a sulfate aluminum concentration of 800 mg/L and pH value of 5.0, the color and COD in the wastewater decreased by 94% and 73%, respectively; with a finale COD concentration of 267 mg/L and color level of 40 units, meeting the secondary standard of GB8978-1996 for industrial wastewater.
基金Project supported by the National Natural Science Foundation of China (No.50525824)Natural Science Fund of Xinjiang Province of China (No.200432109).
文摘High strength refractory organic stream is produced during the production of 2-phenylamino-3-methyl-6-di-n-butylaminofluoran (One Dye Black 2, abbr. ODB 2), a novel heat-sensitive material with a promising market. In this study, a combination of acidificationprecipitation, primary biological treatment, Fenton's oxidation and another biological treatment was successfully used for the removal of COD from 18000-25000 mg/L to below 200 mg/L from the ODB 2 production wastewater in a pilot experiment. A COD removal of 70%-80% was achieved by acidification-precipitation under a pH of 2.5-3.0. The first step biodegradafion permitted an average COD removal of 70% under an hydraulic residence time (HRT) of 30 h. By batch tests, the optimum conditions of Fenton's oxidation were acquired as: Fe^2+ dose 6.0 mmol/L; H2O2 dose 3000 mg/L; and reaction time 6 h. The second step biological treatment could ensure an effluent COD below 200 mg/L under an HRT of 10 h following the Fenton's treatment.
基金Sponsored by National Nature Science Foundation of China (20476010)
文摘Fenton's reagent was employed to treat the wastewater containing RDX.The effects of FeSO4 concentration,H2O2 concentration,pH value,reaction time,temperature and initial COD of wastewater on residual COD of wastewater were investigated.The results show that the optimum FeSO4 concentration and pH are 700 mg/L and 2.5,respectively,and the residual COD of wastewater decreases with the rise in H2O2 concentration,but increases with the rise in temperature.After Fenton's reagent treatment,the initial COD of less than 874 mg/L wastewater can meet effluent standard.Under conditions of 100 mg/L H2O2,437 mg/L initial COD and 15 ℃ temperature,the lowest residual COD is obtained at 83.80 mg/L in 5 min.
文摘In this work, the degradation of 2-chloro-4,6-diamino-1,3,5-triazine in aqueous solutions by photo-Fenton process has been investigated. The preliminary results have shown that the degradation of 2-chloro-4,6-diamino-1,3,5-triazine by photo-Fenton process is more rapid and more effective than Fenton and UV/H2O2 processes. The effects of certain experimental parameters on kinetics and efficiency of the degradation of 2-chloro-4,6,-diamino-1,3,5-triazine by photo-Fenton process, have been evaluated. Under optimal conditions, photo-Fenton process achieved more than 90% of chloride release and about 30% of nitrate formation. The results of total organic carbon (TOC) and total Kjeldahl nitrogen (TKN) analyses have shown that no carbon dioxide and ammonia are formed during photo-Fenton treatment of aqueous solutions containing 40 mg/L triazine. These results indicate that only substituent groups of triazine ring are released;however, nitrogen atoms of triazine ring remain unaffected. A simple mechanism of degradation of 2-chloro-4,6-diamino-1,3,5-triazine has been proposed. The degradation starts by a rapid release of chlorine atoms as chloride ions to form 2-hydroxy-4,6-diamino-1,3,5-triazine. The amino groups of 2-hydroxy-4,6-diamino-1,3,5-triazine undergo are oxidized into nitro groups by hydroxyl radicals to form 2-hydroxy-4,6-dinitro-1,3,5-triazine which undergoes a slow release of nitro groups and their substitution with hydroxyl groups to form cyanuric acid and nitrate ions. The degradation of cyanuric acid by photo-Fenton process has also been investigated. The results of TOC and TKN analyzes show that no carbon dioxide is formed during the treatment.
基金the Natural Science Foundation of China(No.21476178)the Fundamental Research Funds for the Central Universities(WUT:2015IVA059)
文摘Gaskets are applied in PEMFCs(proton exchange membrane fuel cells) to keep reactant gases and liquid within their respective regions, which are of great significance for the both sealing and electrochemical performance of fuel cells during the long-term operation. In this study, the degradation of silicone rubbers, often selected as seals in PEMFCs, in Fenton's reagents with different H_2O_2 concentrations was investigated. The changes in chemical properties, mechanical behavior and surface morphology of the samples were studied before and after exposure to the test environment over time. It is found that increasing H_2O_2 concentration will degrade the rubbers more severely. The experimental results elucidate the degradation mechanism of silicone rubbers in Fenton's reagents and the influence of H_2O_2 in the degradation process.
文摘Ethylenediaminetetraacetic acid (EDTA) is a chelating agent that has been used for decontamination purposes in nuclear industry. The presence of EDTA in decontamination wastes can cause complexation of the cations resulting into interferences in their removal by various treatment processes such as chemical precipitation, ion exchange etc. Further, it might also impart elevated leachability of cationic contaminants from the conditioned wastes immobilized in cement or other matrices and can negatively influence the quality of the final form of waste. In the present study, kinetics of degradation of EDTA (20,000 mg/l) by employing either Photo-Fenton process using UV (15 W λmax = 253.7 nm) or Sono-Fenton process using ultrasound at 130 KHz or simultaneous Sono-Photo Fenton process has been investigated. EDTA is effectively degraded by the synergistic effect of both Photo Fenton and Sono Fenton process. All the above mentioned processes were found to follow a first order kinetics reaction. From the observed pH changes during the oxidation processes, it can be concluded that there is a loss of chelating ability of EDTA. Formation of amides was con- firmed during the degradation processes.
文摘Kinetics of homogeneous degradation of Eosin Y (EY), also known as Acid red 87 (CI 45380), are studied, mostly using Fenton’s process, at 30℃ by monitoring its absorbance at 517 nm (λ<sub>max</sub> of EY). This process is one of the advanced oxidation processes (AOPs). Mixture of H<sub>2</sub>O<sub>2</sub> and Fe(II) ion in acetate buffer medium (pH 2.74 - 4.56) generates hydroxyl free radicals (?OH) which attack the dye molecules, resulting in degradation of the dye molecules. Results show that the initial rate of EY degradation decreases with the increasing of solution pH because of removal of kinetically important Fe (iron) species through formation of ferric hydroxide. On the other hand, the rate increases with increasing the concentrations of H<sub>2</sub>O<sub>2</sub>, Fe(II) and EY at low solution pH. The initial rate increases with increasing of concentration of H2O2 and, subsequently remains unaffected with further increase of its concentration at a constant Fe(II) concentration because of the enhanced scavenging environment created by H<sub>2</sub>O<sub>2</sub> at its higher concentration. The initial rate also increases with increasing of concentration of Fe(II) at a constant H<sub>2</sub>O<sub>2</sub> concentration and remains unaffected with its further increase. EY concentration also enhances the initial rate at low pH. However, the initial rate is significantly enhanced by UV light. This is because of formation of additional hydroxyl radicals through excitation of the dye molecules by UV light. During the period of experiment, EY in aqueous solution alone hardly suffered any degradation. Degradation mechanism of EY by the Fenton and photo-Fenton’s processes is also discussed. Statistical analysis was used to validate the experimental results. Low values of the standard deviation for both the initial rate and % degradation indicated the consistency of the experimental data.
文摘The experiments focused on the Fenton treatment of humic substances(HS) in concentrated landfill leachate rejected by reverse osmosis(RO).The changes in dissolved organic matter by oxidation/coagulation were assessed by using gross organic parameters such as chemical oxygen demand(COD),total organic carbon(TOC),UV254 and COD/TOC molar ratio during the treatment with Fenton reagent.The results demonstrated that the humic substances removal efficiency(from 11.9% to 89.5%) was higher than that of COD(from 9.6% to 75.2%) and there was a good correlation between humic substances degradation and COD removal.This study showed that the oxidation efficiency controlled the coagulation efficiency,so high oxidation efficiency may cause relatively low coagulation.The change of(COD/TOC)oxid indicated that the oxidation reaction was ultimate degradation under the condition of pH= 2.0—4.0,>80 mmol·L-1,= 40—160 mmol·L-1,reaction time 2 h.The changes of(COD/TOC)coag illustrated that the oxidation state of the organic matter removed by coagulation was significantly higher than in the fresh landfill leachate under the above reaction conditions.