The Fenwei Basin, covered by loess, experiences severe ground fissure disasters. These disasters disrupt the continuity of the loess and pose significant threats to engineering construction safety along transportation...The Fenwei Basin, covered by loess, experiences severe ground fissure disasters. These disasters disrupt the continuity of the loess and pose significant threats to engineering construction safety along transportation routes. Nevertheless, the crack characteristics and the influence zone of ground fissures in the loess layer remain inadequately investigated. To effectively prevent and control ground fissure disasters, physical model tests and the PFC(particle flow code) numerical simulation method are used to investigate the crack mechanism of buried ground fissures in the loess layer. The results show that there are two main cracks in the layer profile, which have a Y-shape morphology. As the dip angle of the preset cracks increased from 60° to 90°, the main deformation zone at the surface gradually shifted towards the footwall. The process of crack propagation from depth to surface is divided into five stages. Additionally, the results confirm the accuracy of the width of the rupture zone d2in the footwall calculated by the cantilever beam theory. These findings can offer theoretical guidance for determining the avoidance distance of ground fissures in loess regions, as well as for implementing disaster prevention and corresponding control measures for various stages of buried ground fissure propagation.展开更多
基金supported by National Natural Science Foundation of China (Grant NOs. 41877250, 41272284)the Key Laboratory of Earth Fissures Geological Disaster, Ministry of Natural Resources (No. EFGD20240601)the Natural Science Foundation of Shaanxi Province-General Project (grant number 2023-JC-YB-231)-Suitability Evaluation of Precast Prestressed Underground Comprehensive Pipe Gallery Crossing Active Ground Fissure。
文摘The Fenwei Basin, covered by loess, experiences severe ground fissure disasters. These disasters disrupt the continuity of the loess and pose significant threats to engineering construction safety along transportation routes. Nevertheless, the crack characteristics and the influence zone of ground fissures in the loess layer remain inadequately investigated. To effectively prevent and control ground fissure disasters, physical model tests and the PFC(particle flow code) numerical simulation method are used to investigate the crack mechanism of buried ground fissures in the loess layer. The results show that there are two main cracks in the layer profile, which have a Y-shape morphology. As the dip angle of the preset cracks increased from 60° to 90°, the main deformation zone at the surface gradually shifted towards the footwall. The process of crack propagation from depth to surface is divided into five stages. Additionally, the results confirm the accuracy of the width of the rupture zone d2in the footwall calculated by the cantilever beam theory. These findings can offer theoretical guidance for determining the avoidance distance of ground fissures in loess regions, as well as for implementing disaster prevention and corresponding control measures for various stages of buried ground fissure propagation.