Fermat’s Last Theorem is a famous theorem in number theory which is difficult to prove.However,it is known that the version of polynomials with one variable of Fermat’s Last Theorem over C can be proved very concisely...Fermat’s Last Theorem is a famous theorem in number theory which is difficult to prove.However,it is known that the version of polynomials with one variable of Fermat’s Last Theorem over C can be proved very concisely.The aim of this paper is to study the similar problems about Fermat’s Last Theorem for multivariate(skew)-polynomials with any characteristic.展开更多
Riemann (1859) had proved four theorems: analytic continuation ζ(s), functional equation ξ(z)=G(s)ζ(s)(s=1/2+iz, z=t−i(σ−1/2)), product expression ξ1(z)and Riemann-Siegel formula Z(z), and proposed Riemann conjec...Riemann (1859) had proved four theorems: analytic continuation ζ(s), functional equation ξ(z)=G(s)ζ(s)(s=1/2+iz, z=t−i(σ−1/2)), product expression ξ1(z)and Riemann-Siegel formula Z(z), and proposed Riemann conjecture (RC): All roots of ξ(z)are real. We have calculated ξand ζ, and found that ξ(z)is alternative oscillation, which intuitively implies RC, and the property of ζ(s)is not good. Therefore Riemann’s direction is correct, but he used the same notation ξ(t)=ξ1(t)to confuse two concepts. So the product expression only can be used in contraction. We find that if ξhas complex roots, then its structure is destroyed, so RC holds. In our proof, using Riemann’s four theorems is sufficient, needn’t cite other results. Hilbert (1900) proposed Riemann hypothesis (RH): The non-trivial roots of ζhave real part 1/2. Of course, RH also holds, but can not be proved directly by ζ(s).展开更多
The Berry-Tabor(BT)conjecture is a famous statistical inference in quantum chaos,which not only establishes the spectral fluctuations of quantum systems whose classical counterparts are integrable but can also be used...The Berry-Tabor(BT)conjecture is a famous statistical inference in quantum chaos,which not only establishes the spectral fluctuations of quantum systems whose classical counterparts are integrable but can also be used to describe other wave phenomena.In this paper,the BT conjecture has been extended to Lévy plates.As predicted by the BT conjecture,level clustering is present in the spectra of Lévy plates.The consequence of level clustering is studied by introducing the distribution of nearest neighbor frequency level spacing ratios P(r),which is calculated through the analytical solution obtained by the Hamiltonian approach.Our work investigates the impact of varying foundation parameters,rotary inertia,and boundary conditions on the frequency spectra,and we find that P(r)conforms to a Poisson distribution in all cases.The reason for the occurrence of the Poisson distribution in the Lévy plates is the independence between modal frequencies,which can be understood through mode functions.展开更多
This study introduces the representation of natural number sets as row vectors and pretends to offer a new perspective on the strong Goldbach conjecture. The natural numbers are restructured and expanded with the incl...This study introduces the representation of natural number sets as row vectors and pretends to offer a new perspective on the strong Goldbach conjecture. The natural numbers are restructured and expanded with the inclusion of the zero element as the source of a strong Goldbach conjecture reformulation. A prime Boolean vector is defined, pinpointing the positions of prime numbers within the odd number sequence. The natural unit primality is discussed in this context and transformed into a source of quantum-like indetermination. This approach allows for rephrasing the strong Goldbach conjecture, framed within a Boolean scalar product between the prime Boolean vector and its reverse. Throughout the discussion, other intriguing topics emerge and are thoroughly analyzed. A final description of two empirical algorithms is provided to prove the strong Goldbach conjecture.展开更多
An edge coloring of hypergraph H is a function such that holds for any pair of intersecting edges . The minimum number of colors in edge colorings of H is called the chromatic index of H and is ...An edge coloring of hypergraph H is a function such that holds for any pair of intersecting edges . The minimum number of colors in edge colorings of H is called the chromatic index of H and is denoted by . Erdös, Faber and Lovász proposed a famous conjecture that holds for any loopless linear hypergraph H with n vertices. In this paper, we show that is true for gap-restricted hypergraphs. Our result extends a result of Alesandroni in 2021.展开更多
In this paper, we prove Legendre’s conjecture: There is a prime number between n<sup>2</sup> and (n +1)<sup>2</sup> for every positive integer n. We also prove three related conjectures. The m...In this paper, we prove Legendre’s conjecture: There is a prime number between n<sup>2</sup> and (n +1)<sup>2</sup> for every positive integer n. We also prove three related conjectures. The method that we use is to analyze binomial coefficients. It is developed by the author from the method of analyzing binomial central coefficients, that was used by Paul Erdős in his proof of Bertrand’s postulate - Chebyshev’s theorem.展开更多
This scientific paper is a comparative analysis of two mathematical conjectures. The newly proposed -3(-n) - 1 Remer conjecture and how it is related to and a proof of the more well known 3n + 1 Collatz conjecture. An...This scientific paper is a comparative analysis of two mathematical conjectures. The newly proposed -3(-n) - 1 Remer conjecture and how it is related to and a proof of the more well known 3n + 1 Collatz conjecture. An overview of both conjectures and their respective iterative processes will be presented. Showcasing their unique properties and behavior to each other. Through a detailed comparison, we highlight the similarities and differences between these two conjectures and discuss their significance in the field of mathematics. And how they prove each other to be true.展开更多
Riemann proved three results: analytically continue ζ(s) over the whole complex plane s =σ + it with a pole s =1;(Theorem A) functional equation ξ(t) = G(s<sub>0</sub>)ζ (s<sub>0</sub>), s&...Riemann proved three results: analytically continue ζ(s) over the whole complex plane s =σ + it with a pole s =1;(Theorem A) functional equation ξ(t) = G(s<sub>0</sub>)ζ (s<sub>0</sub>), s<sub>0</sub> =1/2 + it and (Theorem B) product expression ξ<sub>1</sub>(t) by all roots of ξ(t). He stated Riemann conjecture (RC): All roots of ξ (t) are real. We find a mistake of Riemann: he used the same notation ξ(t) in two theorems. Theorem B must contain complex roots;it conflicts with RC. Thus theorem B can only be used by contradiction. Our research can be completed on s<sub>0</sub> =1/2 + it. Using all real roots r<sub>k</sub><sub> </sub>and (true) complex roots z<sub>j</sub> = t<sub>j</sub> + ia<sub>j</sub> of ξ (z), define product expressions w(t), w(0) =ξ(0) and Q(t) > 0, Q(0) =1 respectively, so ξ<sub>1</sub>(t) = w(t)Q(t). Define infinite point-set L(ω) = {t : t ≥10 and |ζ(s<sub>0</sub>)| =ω} for small ω > 0. If ξ(t) has complex roots, then ω =ωQ(t) on L(ω). Finally in a large interval of the first module |z<sub>1</sub>|>>1, we can find many points t ∈ L(ω) to make Q(t) . This contraction proves RC. In addition, Riemann hypothesis (RH) ζ for also holds, but it cannot be proved by ζ.展开更多
The definition of Collatz Operator, the mathematical avatar of the Collatz Algorithm, permits the transformation of the Collatz conjecture, which is delineated over the whole natural number set, into an equivalent inf...The definition of Collatz Operator, the mathematical avatar of the Collatz Algorithm, permits the transformation of the Collatz conjecture, which is delineated over the whole natural number set, into an equivalent inference restricted to the odd prime number set only. Based on this redefinition, one can describe an empirical-heuristic proof of the Collatz conjecture.展开更多
In this paper we prove in a new way, the well known result, that Fermat’s equation a<sup>4</sup> + b<sup>4</sup> = c<sup>4</sup>, is not solvable in ℕ , when abc≠0 . To show this ...In this paper we prove in a new way, the well known result, that Fermat’s equation a<sup>4</sup> + b<sup>4</sup> = c<sup>4</sup>, is not solvable in ℕ , when abc≠0 . To show this result, it suffices to prove that: ( F 0 ): a 1 4 + ( 2 s b 1 ) 4 = c 1 4 , is not solvable in ℕ , (where a 1 , b 1 , c 1 ∈2ℕ+1 , pairwise primes, with necessarly 2≤s∈ℕ ). The key idea of our proof is to show that if (F<sub>0</sub>) holds, then there exist α 2 , β 2 , γ 2 ∈2ℕ+1 , such that ( F 1 ): α 2 4 + ( 2 s−1 β 2 ) 4 = γ 2 4 , holds too. From where, one conclude that it is not possible, because if we choose the quantity 2 ≤ s, as minimal in value among all the solutions of ( F 0 ) , then ( α 2 ,2 s−1 β 2 , γ 2 ) is also a solution of Fermat’s type, but with 2≤s−1<s , witch is absurd. To reach such a result, we suppose first that (F<sub>0</sub>) is solvable in ( a 1 ,2 s b 1 , c 1 ) , s ≥ 2 like above;afterwards, proceeding with “Pythagorician divisors”, we creat the notions of “Fermat’s b-absolute divisors”: ( d b , d ′ b ) which it uses hereafter. Then to conclude our proof, we establish the following main theorem: there is an equivalence between (i) and (ii): (i) (F<sub>0</sub>): a 1 4 + ( 2 s b 1 ) 4 = c 1 4 , is solvable in ℕ , with 2≤s∈ℕ , ( a 1 , b 1 , c 1 )∈ ( 2ℕ+1 ) 3 , coprime in pairs. (ii) ∃( a 1 , b 1 , c 1 )∈ ( 2ℕ+1 ) 3 , coprime in pairs, for wich: ∃( b ′ 2 , b 2 , b ″ 2 )∈ ( 2ℕ+1 ) 3 coprime in pairs, and 2≤s∈ℕ , checking b 1 = b ′ 2 b 2 b ″ 2 , and such that for notations: S=s−λ( s−1 ) , with λ∈{ 0,1 } defined by c 1 − a 1 2 ≡λ( mod2 ) , d b =gcd( 2 s b 1 , c 1 − a 1 )= 2 S b 2 and d ′ b = 2 s−S b ′ 2 = 2 s B 2 d b , where ( 2 s B 2 ) 2 =gcd( b 1 2 , c 1 2 − a 1 2 ) , the following system is checked: { c 1 − a 1 = d b 4 2 2+λ = 2 2−λ ( 2 S−1 b 2 ) 4 c 1 + a 1 = 2 1+λ d ′ b 4 = 2 1+λ ( 2 s−S b ′ 2 ) 4 c 1 2 + a 1 2 =2 b ″ 2 4;and this system implies: ( b 1−λ,2 4 ) 2 + ( 2 4s−3 b λ,2 4 ) 2 = ( b ″ 2 2 ) 2;where: ( b 1−λ,2 , b λ,2 , b ″ 2 )={ ( b ′ 2 , b 2 , b ″ 2 ) if λ=0 ( b 2 , b ′ 2 , b ″ 2 ) if λ=1;From where, it is quite easy to conclude, following the method explained above, and which thus closes, part I, of this article. .展开更多
Considering Pythagorician divisors theory which leads to a new parameterization, for Pythagorician triplets ( a,b,c )∈ ℕ 3∗ , we give a new proof of the well-known problem of these particular squareless numbers n∈ ℕ...Considering Pythagorician divisors theory which leads to a new parameterization, for Pythagorician triplets ( a,b,c )∈ ℕ 3∗ , we give a new proof of the well-known problem of these particular squareless numbers n∈ ℕ ∗ , called congruent numbers, characterized by the fact that there exists a right-angled triangle with rational sides: ( A α ) 2 + ( B β ) 2 = ( C γ ) 2 , such that its area Δ= 1 2 A α B β =n;or in an equivalent way, to that of the existence of numbers U 2 , V 2 , W 2 ∈ ℚ 2∗ that are in an arithmetic progression of reason n;Problem equivalent to the existence of: ( a,b,c )∈ ℕ 3∗ prime in pairs, and f∈ ℕ ∗ , such that: ( a−b 2f ) 2 , ( c 2f ) 2 , ( a+b 2f ) 2 are in an arithmetic progression of reason n;And this problem is also equivalent to that of the existence of a non-trivial primitive integer right-angled triangle: a 2 + b 2 = c 2 , such that its area Δ= 1 2 ab=n f 2 , where f∈ ℕ ∗ , and this last equation can be written as follows, when using Pythagorician divisors: (1) Δ= 1 2 ab= 2 S−1 d e ¯ ( d+ 2 S−1 e ¯ )( d+ 2 S e ¯ )=n f 2;Where ( d, e ¯ )∈ ( 2ℕ+1 ) 2 such that gcd( d, e ¯ )=1 and S∈ ℕ ∗ , where 2 S−1 , d, e ¯ , d+ 2 S−1 e ¯ , d+ 2 S e ¯ , are pairwise prime quantities (these parameters are coming from Pythagorician divisors). When n=1 , it is the case of the famous impossible problem of the integer right-angled triangle area to be a square, solved by Fermat at his time, by his famous method of infinite descent. We propose in this article a new direct proof for the numbers n=1 (resp. n=2 ) to be non-congruent numbers, based on an particular induction method of resolution of Equation (1) (note that this method is efficient too for general case of prime numbers n=p≡a ( ( mod8 ) , gcd( a,8 )=1 ). To prove it, we use a classical proof by induction on k , that shows the non-solvability property of any of the following systems ( t=0 , corresponding to case n=1 (resp. t=1 , corresponding to case n=2 )): ( Ξ t,k ){ X 2 + 2 t ( 2 k Y ) 2 = Z 2 X 2 + 2 t+1 ( 2 k Y ) 2 = T 2 , where k∈ℕ;and solutions ( X,Y,Z,T )=( D k , E k , f k , f ′ k )∈ ( 2ℕ+1 ) 4 , are given in pairwise prime numbers.2020-Mathematics Subject Classification 11A05-11A07-11A41-11A51-11D09-11D25-11D41-11D72-11D79-11E25 .展开更多
Data storage solutions are a crucial aspect of any application, significantly impacting data management and system performance. This article explores the rationale behind utilizing both SQL and NoSQL databases, addres...Data storage solutions are a crucial aspect of any application, significantly impacting data management and system performance. This article explores the rationale behind utilizing both SQL and NoSQL databases, addressing key questions about when each type is preferable. The background emphasizes the importance of selecting the appropriate database technology to meet specific application requirements. The purpose of this research is to provide a comprehensive guide for choosing between SQL and NoSQL databases based on various factors, including workload characteristics, scalability needs, and consistency requirements. To achieve this, we examine different strategies for implementing SQL and NoSQL databases in large-scale distributed applications and systems. The research method involves a comparative analysis of the features, advantages, and limitations of both database types. We specifically focus on scenarios involving read-heavy versus write-heavy systems and the trade-offs between availability and consistency. The results of this research indicate that SQL databases, with their relational structure and ACID compliance, are ideal for applications requiring complex queries and data integrity. In contrast, NoSQL databases, offering schema flexibility and horizontal scalability, are better suited for managing extensive datasets and high-velocity data ingestion. In conclusion, the selection of a database depends on the specific needs of the application. SQL databases are preferred for transactional systems with complex relationships, while NoSQL databases excel in scenarios demanding flexibility and scalability. The study provides insights into hybrid approaches, leveraging both database types to optimize system performance.展开更多
Let p be a prime with p≡3(mod 4). In this paper,by using some results relate the representation of integers by primitive binary quadratic forms,we prove that if x,y,z are positive integers satisfying x^p+y^p=z^p, p|x...Let p be a prime with p≡3(mod 4). In this paper,by using some results relate the representation of integers by primitive binary quadratic forms,we prove that if x,y,z are positive integers satisfying x^p+y^p=z^p, p|xyz, x<y<z, then y>p^(6p-2)/2.展开更多
基金supported by the National Natural Science Foundation of China(12131015,12071422).
文摘Fermat’s Last Theorem is a famous theorem in number theory which is difficult to prove.However,it is known that the version of polynomials with one variable of Fermat’s Last Theorem over C can be proved very concisely.The aim of this paper is to study the similar problems about Fermat’s Last Theorem for multivariate(skew)-polynomials with any characteristic.
文摘Riemann (1859) had proved four theorems: analytic continuation ζ(s), functional equation ξ(z)=G(s)ζ(s)(s=1/2+iz, z=t−i(σ−1/2)), product expression ξ1(z)and Riemann-Siegel formula Z(z), and proposed Riemann conjecture (RC): All roots of ξ(z)are real. We have calculated ξand ζ, and found that ξ(z)is alternative oscillation, which intuitively implies RC, and the property of ζ(s)is not good. Therefore Riemann’s direction is correct, but he used the same notation ξ(t)=ξ1(t)to confuse two concepts. So the product expression only can be used in contraction. We find that if ξhas complex roots, then its structure is destroyed, so RC holds. In our proof, using Riemann’s four theorems is sufficient, needn’t cite other results. Hilbert (1900) proposed Riemann hypothesis (RH): The non-trivial roots of ζhave real part 1/2. Of course, RH also holds, but can not be proved directly by ζ(s).
基金supported by the National Natural Science Foundation of China(Grant Nos.12261064 and 11861048)the Natural Science Foundation of Inner Mongolia,China(Grant No.2021MS01004)the Innovation Program for Graduate Education of Inner Mongolia University(Grant No.11200-5223737).
文摘The Berry-Tabor(BT)conjecture is a famous statistical inference in quantum chaos,which not only establishes the spectral fluctuations of quantum systems whose classical counterparts are integrable but can also be used to describe other wave phenomena.In this paper,the BT conjecture has been extended to Lévy plates.As predicted by the BT conjecture,level clustering is present in the spectra of Lévy plates.The consequence of level clustering is studied by introducing the distribution of nearest neighbor frequency level spacing ratios P(r),which is calculated through the analytical solution obtained by the Hamiltonian approach.Our work investigates the impact of varying foundation parameters,rotary inertia,and boundary conditions on the frequency spectra,and we find that P(r)conforms to a Poisson distribution in all cases.The reason for the occurrence of the Poisson distribution in the Lévy plates is the independence between modal frequencies,which can be understood through mode functions.
文摘This study introduces the representation of natural number sets as row vectors and pretends to offer a new perspective on the strong Goldbach conjecture. The natural numbers are restructured and expanded with the inclusion of the zero element as the source of a strong Goldbach conjecture reformulation. A prime Boolean vector is defined, pinpointing the positions of prime numbers within the odd number sequence. The natural unit primality is discussed in this context and transformed into a source of quantum-like indetermination. This approach allows for rephrasing the strong Goldbach conjecture, framed within a Boolean scalar product between the prime Boolean vector and its reverse. Throughout the discussion, other intriguing topics emerge and are thoroughly analyzed. A final description of two empirical algorithms is provided to prove the strong Goldbach conjecture.
文摘An edge coloring of hypergraph H is a function such that holds for any pair of intersecting edges . The minimum number of colors in edge colorings of H is called the chromatic index of H and is denoted by . Erdös, Faber and Lovász proposed a famous conjecture that holds for any loopless linear hypergraph H with n vertices. In this paper, we show that is true for gap-restricted hypergraphs. Our result extends a result of Alesandroni in 2021.
文摘In this paper, we prove Legendre’s conjecture: There is a prime number between n<sup>2</sup> and (n +1)<sup>2</sup> for every positive integer n. We also prove three related conjectures. The method that we use is to analyze binomial coefficients. It is developed by the author from the method of analyzing binomial central coefficients, that was used by Paul Erdős in his proof of Bertrand’s postulate - Chebyshev’s theorem.
文摘This scientific paper is a comparative analysis of two mathematical conjectures. The newly proposed -3(-n) - 1 Remer conjecture and how it is related to and a proof of the more well known 3n + 1 Collatz conjecture. An overview of both conjectures and their respective iterative processes will be presented. Showcasing their unique properties and behavior to each other. Through a detailed comparison, we highlight the similarities and differences between these two conjectures and discuss their significance in the field of mathematics. And how they prove each other to be true.
文摘Riemann proved three results: analytically continue ζ(s) over the whole complex plane s =σ + it with a pole s =1;(Theorem A) functional equation ξ(t) = G(s<sub>0</sub>)ζ (s<sub>0</sub>), s<sub>0</sub> =1/2 + it and (Theorem B) product expression ξ<sub>1</sub>(t) by all roots of ξ(t). He stated Riemann conjecture (RC): All roots of ξ (t) are real. We find a mistake of Riemann: he used the same notation ξ(t) in two theorems. Theorem B must contain complex roots;it conflicts with RC. Thus theorem B can only be used by contradiction. Our research can be completed on s<sub>0</sub> =1/2 + it. Using all real roots r<sub>k</sub><sub> </sub>and (true) complex roots z<sub>j</sub> = t<sub>j</sub> + ia<sub>j</sub> of ξ (z), define product expressions w(t), w(0) =ξ(0) and Q(t) > 0, Q(0) =1 respectively, so ξ<sub>1</sub>(t) = w(t)Q(t). Define infinite point-set L(ω) = {t : t ≥10 and |ζ(s<sub>0</sub>)| =ω} for small ω > 0. If ξ(t) has complex roots, then ω =ωQ(t) on L(ω). Finally in a large interval of the first module |z<sub>1</sub>|>>1, we can find many points t ∈ L(ω) to make Q(t) . This contraction proves RC. In addition, Riemann hypothesis (RH) ζ for also holds, but it cannot be proved by ζ.
文摘The definition of Collatz Operator, the mathematical avatar of the Collatz Algorithm, permits the transformation of the Collatz conjecture, which is delineated over the whole natural number set, into an equivalent inference restricted to the odd prime number set only. Based on this redefinition, one can describe an empirical-heuristic proof of the Collatz conjecture.
文摘In this paper we prove in a new way, the well known result, that Fermat’s equation a<sup>4</sup> + b<sup>4</sup> = c<sup>4</sup>, is not solvable in ℕ , when abc≠0 . To show this result, it suffices to prove that: ( F 0 ): a 1 4 + ( 2 s b 1 ) 4 = c 1 4 , is not solvable in ℕ , (where a 1 , b 1 , c 1 ∈2ℕ+1 , pairwise primes, with necessarly 2≤s∈ℕ ). The key idea of our proof is to show that if (F<sub>0</sub>) holds, then there exist α 2 , β 2 , γ 2 ∈2ℕ+1 , such that ( F 1 ): α 2 4 + ( 2 s−1 β 2 ) 4 = γ 2 4 , holds too. From where, one conclude that it is not possible, because if we choose the quantity 2 ≤ s, as minimal in value among all the solutions of ( F 0 ) , then ( α 2 ,2 s−1 β 2 , γ 2 ) is also a solution of Fermat’s type, but with 2≤s−1<s , witch is absurd. To reach such a result, we suppose first that (F<sub>0</sub>) is solvable in ( a 1 ,2 s b 1 , c 1 ) , s ≥ 2 like above;afterwards, proceeding with “Pythagorician divisors”, we creat the notions of “Fermat’s b-absolute divisors”: ( d b , d ′ b ) which it uses hereafter. Then to conclude our proof, we establish the following main theorem: there is an equivalence between (i) and (ii): (i) (F<sub>0</sub>): a 1 4 + ( 2 s b 1 ) 4 = c 1 4 , is solvable in ℕ , with 2≤s∈ℕ , ( a 1 , b 1 , c 1 )∈ ( 2ℕ+1 ) 3 , coprime in pairs. (ii) ∃( a 1 , b 1 , c 1 )∈ ( 2ℕ+1 ) 3 , coprime in pairs, for wich: ∃( b ′ 2 , b 2 , b ″ 2 )∈ ( 2ℕ+1 ) 3 coprime in pairs, and 2≤s∈ℕ , checking b 1 = b ′ 2 b 2 b ″ 2 , and such that for notations: S=s−λ( s−1 ) , with λ∈{ 0,1 } defined by c 1 − a 1 2 ≡λ( mod2 ) , d b =gcd( 2 s b 1 , c 1 − a 1 )= 2 S b 2 and d ′ b = 2 s−S b ′ 2 = 2 s B 2 d b , where ( 2 s B 2 ) 2 =gcd( b 1 2 , c 1 2 − a 1 2 ) , the following system is checked: { c 1 − a 1 = d b 4 2 2+λ = 2 2−λ ( 2 S−1 b 2 ) 4 c 1 + a 1 = 2 1+λ d ′ b 4 = 2 1+λ ( 2 s−S b ′ 2 ) 4 c 1 2 + a 1 2 =2 b ″ 2 4;and this system implies: ( b 1−λ,2 4 ) 2 + ( 2 4s−3 b λ,2 4 ) 2 = ( b ″ 2 2 ) 2;where: ( b 1−λ,2 , b λ,2 , b ″ 2 )={ ( b ′ 2 , b 2 , b ″ 2 ) if λ=0 ( b 2 , b ′ 2 , b ″ 2 ) if λ=1;From where, it is quite easy to conclude, following the method explained above, and which thus closes, part I, of this article. .
文摘Considering Pythagorician divisors theory which leads to a new parameterization, for Pythagorician triplets ( a,b,c )∈ ℕ 3∗ , we give a new proof of the well-known problem of these particular squareless numbers n∈ ℕ ∗ , called congruent numbers, characterized by the fact that there exists a right-angled triangle with rational sides: ( A α ) 2 + ( B β ) 2 = ( C γ ) 2 , such that its area Δ= 1 2 A α B β =n;or in an equivalent way, to that of the existence of numbers U 2 , V 2 , W 2 ∈ ℚ 2∗ that are in an arithmetic progression of reason n;Problem equivalent to the existence of: ( a,b,c )∈ ℕ 3∗ prime in pairs, and f∈ ℕ ∗ , such that: ( a−b 2f ) 2 , ( c 2f ) 2 , ( a+b 2f ) 2 are in an arithmetic progression of reason n;And this problem is also equivalent to that of the existence of a non-trivial primitive integer right-angled triangle: a 2 + b 2 = c 2 , such that its area Δ= 1 2 ab=n f 2 , where f∈ ℕ ∗ , and this last equation can be written as follows, when using Pythagorician divisors: (1) Δ= 1 2 ab= 2 S−1 d e ¯ ( d+ 2 S−1 e ¯ )( d+ 2 S e ¯ )=n f 2;Where ( d, e ¯ )∈ ( 2ℕ+1 ) 2 such that gcd( d, e ¯ )=1 and S∈ ℕ ∗ , where 2 S−1 , d, e ¯ , d+ 2 S−1 e ¯ , d+ 2 S e ¯ , are pairwise prime quantities (these parameters are coming from Pythagorician divisors). When n=1 , it is the case of the famous impossible problem of the integer right-angled triangle area to be a square, solved by Fermat at his time, by his famous method of infinite descent. We propose in this article a new direct proof for the numbers n=1 (resp. n=2 ) to be non-congruent numbers, based on an particular induction method of resolution of Equation (1) (note that this method is efficient too for general case of prime numbers n=p≡a ( ( mod8 ) , gcd( a,8 )=1 ). To prove it, we use a classical proof by induction on k , that shows the non-solvability property of any of the following systems ( t=0 , corresponding to case n=1 (resp. t=1 , corresponding to case n=2 )): ( Ξ t,k ){ X 2 + 2 t ( 2 k Y ) 2 = Z 2 X 2 + 2 t+1 ( 2 k Y ) 2 = T 2 , where k∈ℕ;and solutions ( X,Y,Z,T )=( D k , E k , f k , f ′ k )∈ ( 2ℕ+1 ) 4 , are given in pairwise prime numbers.2020-Mathematics Subject Classification 11A05-11A07-11A41-11A51-11D09-11D25-11D41-11D72-11D79-11E25 .
文摘Data storage solutions are a crucial aspect of any application, significantly impacting data management and system performance. This article explores the rationale behind utilizing both SQL and NoSQL databases, addressing key questions about when each type is preferable. The background emphasizes the importance of selecting the appropriate database technology to meet specific application requirements. The purpose of this research is to provide a comprehensive guide for choosing between SQL and NoSQL databases based on various factors, including workload characteristics, scalability needs, and consistency requirements. To achieve this, we examine different strategies for implementing SQL and NoSQL databases in large-scale distributed applications and systems. The research method involves a comparative analysis of the features, advantages, and limitations of both database types. We specifically focus on scenarios involving read-heavy versus write-heavy systems and the trade-offs between availability and consistency. The results of this research indicate that SQL databases, with their relational structure and ACID compliance, are ideal for applications requiring complex queries and data integrity. In contrast, NoSQL databases, offering schema flexibility and horizontal scalability, are better suited for managing extensive datasets and high-velocity data ingestion. In conclusion, the selection of a database depends on the specific needs of the application. SQL databases are preferred for transactional systems with complex relationships, while NoSQL databases excel in scenarios demanding flexibility and scalability. The study provides insights into hybrid approaches, leveraging both database types to optimize system performance.
文摘Let p be a prime with p≡3(mod 4). In this paper,by using some results relate the representation of integers by primitive binary quadratic forms,we prove that if x,y,z are positive integers satisfying x^p+y^p=z^p, p|xyz, x<y<z, then y>p^(6p-2)/2.