Around 1637, Fermat wrote his Last Theorem in the margin of his copy “<em>It is impossible to separate a cube into two cubes, or a fourth power into two fourth powers, or in general, any power higher than the s...Around 1637, Fermat wrote his Last Theorem in the margin of his copy “<em>It is impossible to separate a cube into two cubes, or a fourth power into two fourth powers, or in general, any power higher than the second, into two like powers</em>”. With <em>n, x, y, z</em> <span style="white-space:nowrap;">∈</span> <strong>N</strong> (meaning that <em>n, x, y, z</em> are all positive numbers) and <em>n</em> > 2, the equation <em>x<sup>n</sup></em> + <em>y<sup>n</sup></em> = <em>z<sup>n</sup></em><sup> </sup>has no solutions. In this paper, I try to prove Fermat’s statement by reverse order, which means no two cubes forms cube, no two fourth power forms a fourth power, or in general no two like powers forms a single like power greater than the two. I used roots, powers and radicals to assert Fermat’s last theorem. Also I tried to generalize Fermat’s conjecture for negative integers, with the help of radical equivalents of Pythagorean triplets and Euler’s disproven conjecture.展开更多
The paper resolves the great debate of the 20th century between the three philosophies of mathematics-logicism, intuitionism and formalism—founded by Bertrand Russell and A. N. Whitehead, L. E. J. Brouwer and David H...The paper resolves the great debate of the 20th century between the three philosophies of mathematics-logicism, intuitionism and formalism—founded by Bertrand Russell and A. N. Whitehead, L. E. J. Brouwer and David Hilbert, respectively. The issue: which one provides firm foundations for mathematics? None of them won the debate. We make a critique of each, consolidate their contributions, rectify their weakness and add our own to resolve the debate. The resolution forms the new foundations of mathematics. Then we apply the new foundations to assess the status of Hilbert’s 23 problems most of which in foundations and find out which ones have been solved, which ones have flawed solutions that we rectify and which ones are open problems. Problem 6 of Hilbert’s problems—Can physics be axiomatized?—is answered yes in E. E. Escultura, Nonlinear Analysis, A-Series: 69(2008), which provides the solution, namely, the grand unified theory (GUT). We also point to the resolution of the 379-year-old Fermat’s conjecture (popularly known as Fermat’s last theorem) in E. E. Escultura, Exact Solutions of Fermat’s Equations (Definitive Resolution of Fermat’s Last Theorem), Nonlinear Studies, 5(2), (1998). Likewise, the proof of the 274-year-old Goldbach’s conjecture is in E. E. Escultura, The New Mathematics and Physics, Applied Mathematics and Computation, 138(1), 2003.展开更多
Let a, b and c be fixed coprime positive integers. In this paper we prove that if a^2 + b^2 = c^3 and b is an odd prime, then the equation a^x + b^y = c^z has only the positive integer solution (x, y, z) = (2,2,3).
文摘Around 1637, Fermat wrote his Last Theorem in the margin of his copy “<em>It is impossible to separate a cube into two cubes, or a fourth power into two fourth powers, or in general, any power higher than the second, into two like powers</em>”. With <em>n, x, y, z</em> <span style="white-space:nowrap;">∈</span> <strong>N</strong> (meaning that <em>n, x, y, z</em> are all positive numbers) and <em>n</em> > 2, the equation <em>x<sup>n</sup></em> + <em>y<sup>n</sup></em> = <em>z<sup>n</sup></em><sup> </sup>has no solutions. In this paper, I try to prove Fermat’s statement by reverse order, which means no two cubes forms cube, no two fourth power forms a fourth power, or in general no two like powers forms a single like power greater than the two. I used roots, powers and radicals to assert Fermat’s last theorem. Also I tried to generalize Fermat’s conjecture for negative integers, with the help of radical equivalents of Pythagorean triplets and Euler’s disproven conjecture.
文摘The paper resolves the great debate of the 20th century between the three philosophies of mathematics-logicism, intuitionism and formalism—founded by Bertrand Russell and A. N. Whitehead, L. E. J. Brouwer and David Hilbert, respectively. The issue: which one provides firm foundations for mathematics? None of them won the debate. We make a critique of each, consolidate their contributions, rectify their weakness and add our own to resolve the debate. The resolution forms the new foundations of mathematics. Then we apply the new foundations to assess the status of Hilbert’s 23 problems most of which in foundations and find out which ones have been solved, which ones have flawed solutions that we rectify and which ones are open problems. Problem 6 of Hilbert’s problems—Can physics be axiomatized?—is answered yes in E. E. Escultura, Nonlinear Analysis, A-Series: 69(2008), which provides the solution, namely, the grand unified theory (GUT). We also point to the resolution of the 379-year-old Fermat’s conjecture (popularly known as Fermat’s last theorem) in E. E. Escultura, Exact Solutions of Fermat’s Equations (Definitive Resolution of Fermat’s Last Theorem), Nonlinear Studies, 5(2), (1998). Likewise, the proof of the 274-year-old Goldbach’s conjecture is in E. E. Escultura, The New Mathematics and Physics, Applied Mathematics and Computation, 138(1), 2003.
基金the National Natural Science Foundation of China (No.10271104)the Guangdong Provincial Natural Science Foundation (No.04011425)
文摘Let a, b and c be fixed coprime positive integers. In this paper we prove that if a^2 + b^2 = c^3 and b is an odd prime, then the equation a^x + b^y = c^z has only the positive integer solution (x, y, z) = (2,2,3).