期刊文献+
共找到858篇文章
< 1 2 43 >
每页显示 20 50 100
Isolation and Identification of Multi-Drug Resistant Strains of Non-Lactose Fermenting Bacteria from Clinical Refuses in Major Hospitals of Khyber Pakhtunkhwa, Pakistan 被引量:1
1
作者 Muhammad Zahid Minhas Akbar +9 位作者 Aftab Alam Sthanadar Pir Asmat Ali Mudassir Shah Iram Alam Sthanadar Muhammad Kaleem Muhammad Aslam Khayyam   Nasrullah   Muhammad Ismail Khan Syeda Mahreen Ul Hassan 《Open Journal of Medical Microbiology》 2014年第2期124-131,共8页
Purpose: The present studied was performed in order to investigate the drug resistance of different non-lactose fermenting gram negative bacteria from clinical isolates. The bacteria were morphologically characterized... Purpose: The present studied was performed in order to investigate the drug resistance of different non-lactose fermenting gram negative bacteria from clinical isolates. The bacteria were morphologically characterized through culturing and gram staining techniques were used for the identification of different bacterial strains. Methods: A total of 324 samples were collected from patients, after they were diagnosed by physicians at different hospitals at district Peshawar. Samples were morphologically identified by blood agar, MacConkey agar and Eosine Methylene Blue, identified by gram staining techniques. Modified Kirby-Bauer Disc diffusion method was used to test the in-vitro susceptibility of the identified isolates to different antibiotics. Results: The non-lactose fermenting gram negative bacteria were isolated from samples of blood (33.30%), pus/ wound (33.30%), urine (23.30%) and from ascetic/pleural fluids (10.20%). The study revealed that Pseudomonas aeroginosa showed high resistance against Gentamicin (74%) and Aztreonam (74%), followed by Ciprofloxacin (59.20%) and Amikacin (33.30). Tazocin was active as low resistance (18.50%) is shown. More resistance was seen in Morganella morganii against Aztreonam (77.7%) followed by Gentamicin (62.90%), Ciprofloxacin (40.70%). Tazocin show low resistance (3.70%). Multidrug resistant Proteus mirabillis was highly resistance to Gentamicin (66.60%), followed by Aztreonam (62.90%), Amikacin (55.50%), Ciprofloxacin (40.20%) and low resistance to Tazocin was (22.20%). Salmonella typhi demonstrated high resistance against Amikacin (62.90%), followed by Aztreonam (48.10%), Tazocin (40.70%). Gentamicin showed low resistance (29.60%), and hence it is more active against S. typhi. Conclusions: It can be concluded from the present study that different species of non-lactose fermenting gram negative bacteria have shown a different resistivity pattern. This study is a gate way for better and suitable management strategy for the infections caused by non-Lactose fermenting bacteria in the sampling region. 展开更多
关键词 MULTIDRUG Resistant Non-Lactose fermenting GRAM Negative BACTERIA Disc Diffusion Technique
下载PDF
Isolation and Identification of Multi-Drug Resistant Strains of Non-Lactose Fermenting Bacteria from Clinical Isolates
2
作者 Minhas Akbar Muhammad Zahid +10 位作者 Pir Asmat Ali Aftab Alam Sthanadar Mudassir Shah Iram Alam Sthanadar Muhammad Kaleem Muhammad Aslam Khayyam   Zahirullah   Syeda Mahreen Ul Hassan Noor Jehan Muhammad Ismail Khan 《Open Journal of Medical Microbiology》 2014年第2期115-123,共9页
Purpose: We studied the drug resistance of different microbes from clinical isolates. The morphological characteristics of bacteria were observed through culture characteristics and by carrying out gram staining techn... Purpose: We studied the drug resistance of different microbes from clinical isolates. The morphological characteristics of bacteria were observed through culture characteristics and by carrying out gram staining techniques while the biochemical characteristics of bacteria were carried out by biochemical test. Methods: A total of 324 samples were collected from suspected patients visiting different hospitals at district Peshawar. For morphological identification, samples of clinical isolates were analyzed by blood agar, MacConkey agar and Eosine Methylene Blue, identified by gram staining and characterized by different biochemical tests. Antibiotic Sensitivity test by Modified Kirby-Bauer Disc diffusion method was used to test the in-vitro susceptibility of the identified isolates to different antibiotics such as Ceftazidime, Ceftazidime, Ceftriaxone, Cefepime and Imipenem. Results: These resistant non-lactose fermenting gram negative bacteria were isolated from samples of pus/wound (33.30%, n = 108/324), blood (33.30%, n = 108/324), urine (23.30%, n = 75/324) and from ascetic/pleural fluids (10.20%, n = 33/324). The study revealed that the percentage of non-fermenting bacterial infection was higher in females (53%) as compared to males (47%) along with higher infection observed in the age group of 11 - 30 years. Pseudomonas aeroginosa showed high resistance against Cefepime (88.80%), followed by Cefoperazone (55.50%), Ceftazidime (48.10%), Ceftriaxone (33.30%). Imipenem was active with low resistance (7.40%). More resistance was seen in Morganella morganii against Imipenem (66.70%) followed by Cefoperazone (55.50%), Ceftriaxone (55.50%). Cefepime showed low resistance (11%). Multi-drug resistant Proteus mirabillis was highly resistance to Ceftriaxone (74.07%), followed by Cefepime (59.20%), Cefoperazone (44.40%) and low resistance for Imipenem (25.90%). Salmonella typhi demonstrated high resistance against Imipenem (74.07%), followed by Ceftriaxone (40.70%), Ceftazidime (37.03%). Cefepime showed low resistance (3.70%), hence it is more active against S. typhi. Conclusions: The different species of non-lactose fermenting gram negative bacteria have shown a different resistivity pattern in the present study. Therefore identification of non-lactose fermenting gram negative bacteria and looking after their resistivity/susceptibility pattern are important for suitable management of the infections caused by them. 展开更多
关键词 MULTIDRUG Resistant Non-Lactose fermenting GRAM Negative BACTERIA Disc Diffusion Technique
下载PDF
<i>In Vitro</i>Screening and Selection of Probiotic Lactic Acid Bacteria Isolated from Spontaneously Fermenting Kunu-Zaki
3
作者 Solakunmi Omotunde Oluwajoba Felix Akinsola Akinyosoye Victor Olusegun Oyetayo 《Advances in Microbiology》 2013年第4期309-316,共8页
The present study was conducted to determine the pro-biotic properties in vitro of the lactic acid bacteria isolated from spontaneously fermenting kunu-zaki. Kunu-zaki was processed using composite, non composite, ger... The present study was conducted to determine the pro-biotic properties in vitro of the lactic acid bacteria isolated from spontaneously fermenting kunu-zaki. Kunu-zaki was processed using composite, non composite, germinated and ungerminated Digitaria exilis (Fonio), Sorghum bicolor (Sorghum) and Pennisetum americanum (Millet) cereals. A total of 150 LAB isolates were obtained from all the fermenting slurries. These 150 LAB isolates were screened for their ability to grow at pH 3.0, resistance against bile salt and ability to inhibit reference test pathogens. Out of these 150 LAB isolates;21 exhibited good probiotic properties. All the 21 isolates were further identified to specie and subspecies level using standard API50CHL system with all 21 showing good survival (P < 0.05) in a pH 3.0 buffered medium and subsequent resistance to 0.3% bile. The LAB isolates which survived these conditions consisted of 18 Lactobacillus species, 2 Pediococcus species and 1 Lactococcus specie. These LAB species were further examined for antimicrobial activity against the growth of reference pathogens Staphylococcus aureus 25923, Escherichia coli 25922, Pseudomonas aeruginosa 27853 and Enterococcus faecalis 29212. All 21 LAB species exhibited good inhibition of all test reference pathogens except Lactobacillus fructivorans, Lactococcus lactis sp lactis and L. fermentum which however, showed no zone of inhibition against the growth of E. faecalis. Kunu-zaki made from composite un-germinated Sorghum bicolor (Sorghum) and Pennisetum americanum (Millet) cereal grains contained the highest percentage (52%) of LAB species which showed good probiotic criteria in vitro. Non composite ungerminated cereals accounted for 33% of the total probiotic LAB isolates whilst the germinated non composite and composite cereals recorded the lowest percentage (10%) and (5%) of probiotic LAB respectively. The results of this research study showed that the LAB species isolated from wild fermentation of kunu-zaki beverage fulfilled the criteria for in vitro screening of probiotic characteristics. These LAB species possed potential for further use as probiotic in human preparations and suggested the use of kunu-zaki made from ungerminated composite sorghum and millet grains as a natural probiotic drink. 展开更多
关键词 Probiotic Spontaneously fermenting GERMINATION COMPOSITE Non COMPOSITE
下载PDF
Fermenting Saudi Wasted Dates by Using <i>Lactobacillus casei</i>(ATCC 393), <i>Acidophilus</i>(CICC 6088) and the Mixed-Culture Bacteria to Produce Lactic Acid
4
作者 Mahmoud H. Bushara Fahad Alkoaik +1 位作者 Ahmed Abasaeed Ronnel Fulleros 《Open Journal of Applied Sciences》 2018年第4期150-157,共8页
The Kingdom of Saudi Arabia produces over one million metric tons annually, which returns a 20% of wasted dates annually. Lactic acid and its derivatives are widely used in food, pharmaceutical and textile industries.... The Kingdom of Saudi Arabia produces over one million metric tons annually, which returns a 20% of wasted dates annually. Lactic acid and its derivatives are widely used in food, pharmaceutical and textile industries. There has been an increase in lactic acid production because it is used as a raw material to produce polylactic acid, a polymer that is used as a special medical and environmental friendly biodegradable plastic. This study aimed to use wasted dates to produce lactic acid by single culture Lactobacillus casei (ATCC 393), Lactobacillus acidophilus (CICC 6088) and the mixed culture using batch fermentation. The investigation results showed that the maximum concentration of lactic acid for ATCC 393, CICC 6088 and the mixed culture are 87, 84 and 84 g/l respectively. For single CICC 6088 and the mixed culture, the total percentage of glucose and fructose utilized was found to be 100%;76%, respectively, whereas in the case of the single culture ATCC 393, the total percentage of glucose and fructose were 100% and 72%, respectively. With regard to lactic acid concentration, and sugar consumption, the results revealed that the single culture ATCC 393 produced the optimum lactic acid of 87 g/l for 48 hr with initial sugar concentration of 90 g/l. 展开更多
关键词 Lactic Acid Culture Lactobacillus Wasted DATES and Fermentation
下载PDF
Insights into microbiota community dynamics and flavor development mechanism during golden pomfret(Trachinotus ovatus)fermentation based on single-molecule real-time sequencing and molecular networking analysis 被引量:1
5
作者 Yueqi Wang Qian Chen +5 位作者 Huan Xiang Dongxiao Sun-Waterhouse Shengjun Chen Yongqiang Zhao Laihao Li Yanyan Wu 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期101-114,共14页
Popular fermented golden pomfret(Trachinotus ovatus)is prepared via spontaneous fermentation;however,the mechanisms underlying the regulation of its flavor development remain unclear.This study shows the roles of the ... Popular fermented golden pomfret(Trachinotus ovatus)is prepared via spontaneous fermentation;however,the mechanisms underlying the regulation of its flavor development remain unclear.This study shows the roles of the complex microbiota and the dynamic changes in microbial community and flavor compounds during fish fermentation.Single-molecule real-time sequencing and molecular networking analysis revealed the correlations among different microbial genera and the relationships between microbial taxa and volatile compounds.Mechanisms underlying flavor development were also elucidated via KEGG based functional annotations.Clostridium,Shewanella,and Staphylococcus were the dominant microbial genera.Forty-nine volatile compounds were detected in the fermented fish samples,with thirteen identified as characteristic volatile compounds(ROAV>1).Volatile profiles resulted from the interactions among the microorganisms and derived enzymes,with the main metabolic pathways being amino acid biosynthesis/metabolism,carbon metabolism,and glycolysis/gluconeogenesis.This study demonstrated the approaches for distinguishing key microbiota associated with volatile compounds and monitoring the industrial production of high-quality fermented fish products. 展开更多
关键词 Fermented golden pomfret Microbiota community Volatile compound Co-occurrence network Metabolic pathway
下载PDF
Structure and immunomodulatory activity of Lentinus edodes polysaccharides modified by probiotic fermentation 被引量:1
6
作者 Jingjing Liang Meina Zhang +6 位作者 Xiaohan Li Yuan Yue Xiaowei Wang Mengzhen Han Tianli Yue Zhouli Wang Zhenpeng Gao 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期421-433,共13页
Plant-based fermentations provide an untapped source for novel biotechnological applications.In this study,a probiotic named Lactobacillus fermentum 21828 was introduced to ferment Lentinus edodes.Polysaccharides were... Plant-based fermentations provide an untapped source for novel biotechnological applications.In this study,a probiotic named Lactobacillus fermentum 21828 was introduced to ferment Lentinus edodes.Polysaccharides were extracted from fermented and non-fermented L.edodes and purified via DEAE-52 and Sephadex G-100.The components designated F-LEP-2a and NF-LEP-2a were analyzed by FT-IR,HPGPC,HPAEC,SEM,GC-MS and NMR.The results revealed that probiotic fermentation increased the molecular weight from 1.16×10^(4) Da to 1.87×10^(4) Da and altered the proportions of glucose,galactose and mannose,in which glucose increased from 45.94%to 48.16%.Methylation analysis and NMR spectra indicated that F-LEP-2a and NF-LEP-2a had similar linkage patterns.Furthermore,their immunomodulatory activities were evaluated with immunosuppressive mice.NF-LEP and F-LEP improved immune organ indices,immunoglobulin(Ig G and Ig M)and cytokines concentrations;restored the antioxidation capacity of liver;and maintained the balance of gut microbiota.F-LEP displayed better moderating effects on the spleen index,immunoglobulin,cytokines and the diversity of gut microbiota than NF-LEP(200,400 mg/kg).Our study provides an efficient and environment-friendly way for the structural modification of polysaccharides,which helps to enhance their biological activity and promote their wide application in food,medicine and other fields. 展开更多
关键词 Lentinus edodes polysaccharide Lactobacillus fermentum fermentation Structural analysis Immunoregulatory activity Nuclear magnetic resonance
下载PDF
Novel uses of ensiled biomasses as feedstocks for green biorefineries
7
作者 Marketta Rinne 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第3期945-955,共11页
Perennial forage plants are efficient utilizers of solar radiation and nutrients so that there is a lot of scope to increase the production of green biomass in many areas.Currently,grasses are mainly used as feeds for... Perennial forage plants are efficient utilizers of solar radiation and nutrients so that there is a lot of scope to increase the production of green biomass in many areas.Currently,grasses are mainly used as feeds for ruminants and equines,but there could be higher added value use for several components of the green biomass.Interest in green biorefin-ing has risen recently motivated by the increased sustainability pressures and need to break the reliance on fossil fuels.Novel products derived from grass,such as paper and packaging,nanofibers,animal bedding,novel protein feeds,extracted proteins,biochemicals,nutraceuticals,bioactive compounds,biogas and biochar could create new sustainable business opportunities in rural areas.Most green biorefinery concepts focus on using fresh green biomass as the feedstock,but preservation of it by ensiling would provide several benefits such as all-year-around avail-ability of the feedstock and increased stability of the press juice and press cake.The major difference between fresh and ensiled grass is the conversion of water soluble carbohydrates into fermentation end products,mainly lactic and acetic acids,that lower the pH of the silage so that it becomes stable in anaerobic conditions.This has some important consequences on the processability and quality of products,which are partly positive and partly negative,e.g.,degradation of protein into peptides,amino acids and ammonia.These aspects are discussed in this review. 展开更多
关键词 ADDITIVE FERMENTATION Liquid-solid separation Protein SILAGE
下载PDF
Evaluation of ruminal methane and ammonia formation and microbiota composition as affected by supplements based on mixtures of tannins and essential oils using Rusitec
8
作者 Giulia Foggi Melissa Terranova +9 位作者 Matteo Daghio Sergej L.Amelchanka Giuseppe Conte Simon Ineichen Monica Agnolucci Carlo Viti Alberto Mantino Arianna Buccioni Michael Kreuzer Marcello Mele 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第4期1607-1622,共16页
Background Dietary supplements based on tannin extracts or essential oil compounds(EOC)have been repeatedly reported as a promising feeding strategy to reduce the environmental impact of ruminant husbandry.A previous ... Background Dietary supplements based on tannin extracts or essential oil compounds(EOC)have been repeatedly reported as a promising feeding strategy to reduce the environmental impact of ruminant husbandry.A previous batch culture screening of various supplements identified selected mixtures with an enhanced potential to mitigate ruminal methane and ammonia formation.Among these,Q-2(named after quebracho extract and EOC blend 2,composed of carvacrol,thymol,and eugenol)and C-10(chestnut extract and EOC blend 10,consisting of oregano and thyme essential oils and limonene)have been investigated in detail in the present study with the semi-continuous rumen simulation technique(Rusitec)in three independent runs.For this purpose,Q-2 and C-10,dosed according to the previous study,were compared with a non-supplemented diet(negative control,NC)and with one supplemented with the commercial EOC-based Agolin^(R) Ruminant(positive control,PC).Results From d 5 to 10 of fermentation incubation liquid was collected and analysed for pH,ammonia,protozoa count,and gas composition.Feed residues were collected for the determination of ruminal degradability.On d 10,samples of incubation liquid were also characterised for bacterial,archaeal and fungal communities by high-throughput sequencing of 16S rRNA and 26S ribosomal large subunit gene amplicons.Regardless of the duration of the fermentation period,Q-2 and C-10 were similarly efficient as PC in mitigating either ammonia(-37%by Q-2,-34%by PC)or methane formation(-12%by C-10,-12%by PC).The PC was also responsible for lower feed degradability and bacterial and fungal richness,whereas Q-2 and C-10 effects,particularly on microbiome diversities,were limited compared to NC.Conclusions All additives showed the potential to mitigate methane or ammonia formation,or both,in vitro over a period of 10 d.However,several differences occurred between PC and Q-2/C-10,indicating different mechanisms of action.The pronounced defaunation caused by PC and its suggested consequences apparently determined at least part of the mitigant effects.Although the depressive effect on NDF degradability caused by Q-2 and C-10 might partially explain their mitigation properties,their mechanisms of action remain mostly to be elucidated. 展开更多
关键词 Additive Bacteria Continuous culture DEGRADABILITY Fermentation Fungi Greenhouse gas In vitro Microbiome RUMEN
下载PDF
Barley Protein LFBEP-C1 from Lactiplantibacillus plantarum dy-1 Fermented Barley Extracts by Inhibiting Lipid Accumulation in a Caenorhabditis elegans Model
9
作者 ZHANG Jia Yan LIU Meng Ting +4 位作者 LIU Yu Hao DENG Huan BAI Juan XIE Jian Hua XIAO Xiang 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2024年第4期377-386,共10页
Objective This study aimed to investigate the lipid-lowering activity of LFBEP-C1 in high glucose-fed Caenorhabditis elegans(C.elegans).Methods In this study,the fermented barley protein LFBEP-C1 was prepared and test... Objective This study aimed to investigate the lipid-lowering activity of LFBEP-C1 in high glucose-fed Caenorhabditis elegans(C.elegans).Methods In this study,the fermented barley protein LFBEP-C1 was prepared and tested for its potential anti-obesity effects on C.elegans.The worms were fed Escherichia coli OP50(E.coli OP50),glucose,and different concentrations of LFBEP-C1.Body size,lifespan,movement,triglyceride content,and gene expression were analyzed.The results were analyzed using ANOVA and Tukey's multiple comparison test.Results Compared with the model group,the head-swing frequency of C.elegans in the group of LFBEP-C1 at 20μg/mL increased by 33.88%,and the body-bending frequency increased by 27.09%.This indicated that LFBEP-C1 improved the locomotive ability of C.elegans.The average lifespan of C.elegans reached 13.55 days,and the body length and width of the C.elegans decreased after LFBEP-C1 intake.Additionally,LFBEP-C1 reduced the content of lipid accumulation and triglyceride levels.The expression levels of sbp-1,daf-2,and mdt-15 significantly decreased,while those of daf-16,tph-1,mod-1,and ser-4 significantly increased after LFBEP-C1 intake.Changes in these genes explain the signaling pathways that regulate lipid metabolism.Conclusion LFBEP-C1 significantly reduced lipid deposition in C.elegans fed a high-glucose diet and alleviated the adverse effects of a high-glucose diet on the development,lifespan,and exercise behavior of C.elegans.In addition,LFBEP-C1 regulated lipid metabolism mainly by mediating the expression of genes in the sterol regulatory element-binding protein,insulin,and 5-hydroxytryptamine signaling pathways. 展开更多
关键词 LFBEP-C1 Fermentation Protein Caenorhabditis elegans Lipid accumulation Signaling pathway
下载PDF
Research advance of Bacillus velezensis:bioinformatics,characteristics,and applications
10
作者 Ting Su Biao Shen +4 位作者 Xingjuan Hu Yue Teng Peifang Weng Zufang Wu Lianliang Liu 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第4期1756-1766,共11页
Bacillus velezensis is a Gram-positive and spore-forming bacterium.It has potent antimicrobial properties that can be used to promote plant growth and as a pesticide by inhibiting pathogens.B.velezensis has the capabi... Bacillus velezensis is a Gram-positive and spore-forming bacterium.It has potent antimicrobial properties that can be used to promote plant growth and as a pesticide by inhibiting pathogens.B.velezensis has the capability to generate a diverse range of enzymes that have potential applications in various fields,such as enzyme production,fermented food,degradation of pollutants,and bioenergy.In addition,B.velezensis is a promising probiotic.It possesses high bile-salt tolerance characteristics and has a high success rate of colonization in the intestinal mucosa.Besides,the strain can also regulate gut microbiota constitute by increasing the number of beneficial microorganisms and decreasing the number of pathogens.Furthermore,based on its special properties,including high-yield protease production and high salt-tolerance,B.velezensis shows potential for use in marine protein fermentation,opening up new avenues for the development of novel food products and bioactive peptides.In addition,B.velezensis can shorten the fermentation time as well as improve the nutritional value and flavor of fermented food.The safety of B.velezensis for food production was evaluated.This review provides valuable insights into the potential uses and benefits of B.velezensis,particularly in the context of fermented foods. 展开更多
关键词 Bacillus velezensis BIOINFORMATICS PROPERTIES FERMENTATION Bioactive peptides
下载PDF
Synergetic Bioproduction of Short-Chain Fatty Acids from Waste Activated Sludge Intensified by the Combined Use of Potassium Ferrate and Biosurfactants
11
作者 CHEN Yanyan YAO Shuo +2 位作者 ZHANG Dahai LI Xianguo FENG Lijuan 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第3期695-709,共15页
The synergetic effect and underlying mechanism of potassium ferrate(PF)with tea saponin(TS,a biosurfactant)in producing short chain fatty acids(SCFAs)from anaerobic fermentation of waste activated sludge(WAS)were expl... The synergetic effect and underlying mechanism of potassium ferrate(PF)with tea saponin(TS,a biosurfactant)in producing short chain fatty acids(SCFAs)from anaerobic fermentation of waste activated sludge(WAS)were explored in this work.Experimental results showed that 0.2 g PF(g TSS)^(-1)(total suspended solid)combined with 0.02 g TS(g TSS)^(-1) could further improve SCFAs’production,and the maximum SCFAs content reached 2008.7 mg COD L^(-1),which is 1.2 and 4.5 times higher than those with PF and TS individually added,respectively,and 5.3 times higher than that of blank WAS on Day 12.In the model substrates experiments,the degradation rates of bovine serum albumin and dextran with combination of PF and TS were 41.3%±0.1% and 48.5%±0.06%,respectively,on Day 3,which are lower than those in blank WAS(with degradation rates of 72.3%±0.5%and 90.3%±0.3%).It was revealed that the oxidative effect of PF and the solubilization of TS caused more organic matters to be dissolved out from WAS,providing a large number of biodegradable substances for subsequent SCFAs production.While WAS pretreated with the combination of PF and TS,the relative abundances of Firmicutes increased from 6.4%(blank)to 38.6%,and that of Proteobacteria decreased from 41.8%(blank)to 21.8%.The combination of PF and TS promoted the hydrolysis process of WAS by enriching Firmicutes,and then increased acetic acid production by inhibiting Proteobacteria that consumed SCFAs.Meanwhile,at the genus level,acidogenesis bacteria(e.g.,Proteiniclasticum and Petrimonas)were enriched whereas SCFAs consuming bacteria(e.g.,Dokdonella)were inhibited. 展开更多
关键词 waste activated sludge anaerobic fermentation potassium ferrate BIOSURFACTANT PRETREATMENT
下载PDF
Targeting gut microbiota in osteoporosis:impact of the microbial based functional food ingredients
12
作者 Pauline Duffuler Khushwant S.Bhullar Jianping Wu 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期1-15,共15页
Osteoporosis is the most common bone disorder,characterized by low bone mineral density and microarchitectural deterioration of the bone tissue,which increases the susceptibility to fracture.In the past decade,emergin... Osteoporosis is the most common bone disorder,characterized by low bone mineral density and microarchitectural deterioration of the bone tissue,which increases the susceptibility to fracture.In the past decade,emerging research findings reported the implication of gut microbiota on bone health and osteoporosis pathology.Osteoporotic patients or individuals with a lower bone mineral density exhibit an alteration of the gut microbiota at several taxonomic levels.Additional reports demonstrate that gut microbiota regulates bone metabolism through the modulation of the gut function(mineral availability and absorption,gut integrity),the immune system,and the endocrine system.Thus,based on the vital role of gut microbiota on bone health,it has emerged as a novel therapeutic target for the prevention of bone loss and the treatment of osteoporosis.Microbial-based functional food ingredients,such as probiotics,prebiotics,synbiotics,and fermented foods,have been developed to alter the gut microbiota composition and function and thus,to provide benefits to the host bone health.Despite promising initial results,microbial-based therapies are still under investigation.Moreover,additional animal studies and clinical trials are needed to understand the interactions between gut microbiota and bone metabolism before further applications. 展开更多
关键词 DYSBIOSIS Bone health Probiotic Prebiotic Fermented food SYNBIOTIC
下载PDF
Influence of nitrogen status on fermentation performances of non-Saccharomyces yeasts:a review
13
作者 Jinchen Li Mengmeng Yuan +3 位作者 Nan Meng Hehe Li Jinyuan Sun Baoguo Sun 《Food Science and Human Wellness》 SCIE CSCD 2024年第2期556-567,共12页
Nitrogen,one of the most crucial nutrients present in grapes and musts,plays a key role in yeast activities during alcoholic fermentation.Such influences are imposed on yeast growth and fermentation performances inclu... Nitrogen,one of the most crucial nutrients present in grapes and musts,plays a key role in yeast activities during alcoholic fermentation.Such influences are imposed on yeast growth and fermentation performances including the formation of secondary metabolites.Saccharomyces cerevisiae,the main yeast responsible for fermentation,has been studied extensively regarding nitrogen impacts.On the other hand,a similar study for non-Saccharomyces yeasts,whose contributions to winemaking have gradually been acknowledged,remains to be fully explored,with a few studies being reported.This review starts by discussing nitrogen impacts on non-Saccharomyces yeast growth and fermentation kinetics in different case scenarios,then proceeds to summarize the nitrogen preferences of individual yeast strains with regulation mechanisms elucidated by recent studies.Detailed discussions on the influences on the production of volatile compounds and proposed pathways therein are made,followed by future work suggested as the final section.In summarizing the nitrogen impacts on non-Saccharomyces yeasts throughout alcoholic fermentation,this review will be helpful in obtaining a more comprehensive view on these non-conventional wine yeasts in terms of nutrient requirements and corresponding volatile production.Research gaps will therefore be elucidated for future research. 展开更多
关键词 Non-Saccharomyces yeasts NITROGEN Fermentation kinetics Nitrogen preference Wine aroma
下载PDF
Effect of fermented Rosa roxburghii Tratt fruit juice on gut microbiota in a dextran sulfate sodium-induced colitis mouse model
14
作者 Yunyang Zuo Haoxiang Xu +6 位作者 Dandan Feng Yuanyuan Shi Jiuchang Li Maoyang Wei Ling Wang Yulong Zhang Ping Hu 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第4期2234-2243,共10页
This study mainly investigated the regulatory effect of Rosa roxburghii Tratt fruit juice fermented by Lacticaseibacillus paracasei SR10-1(LAB-RRTJ)on modulating gut microbiota in dextran sulfate sodium(DSS)-induced u... This study mainly investigated the regulatory effect of Rosa roxburghii Tratt fruit juice fermented by Lacticaseibacillus paracasei SR10-1(LAB-RRTJ)on modulating gut microbiota in dextran sulfate sodium(DSS)-induced ulcerative colitis in mice.Compared to control group,DSS induction decreased body weight of mice,indexes of Shannon,Simpson,Chao1 and Faith_pd,and increased disease activity index(DAI)and levels of interleukin 1β(IL-1β),IL-6,tumor necrosis factorα(TNF-α)and interferon-γ(IFN-γ);And this induction also led to an increase in Proteobacteria,Verrucomicrobia and Actinobacteria at phylum level,harmful bacterial species richness at genus level,and relative richness of S.sciuri,Desulfovibrio C21_c20,R.gnavus and Akkermansia muciniphila at species level,and a decrease in Firmicutes at phylum level and relative richness of B.acidifaciens in mice.LAB-RRTJ increased body weight of mice with DSS induced ulcerative colitis(UC)and indexes of Shannon,Simpson,Chao1 and Faith_pd,reduced DAI and the content of four infl ammatory factors and improved gut microbiota imbalance in DSS induced UC mice.Besides,the number of operational taxonomic units(OTUs)increased,α-diversity andβ-diversity were restored and similar to those in mice in the control group after LAB-RRTJ treatment.Compared with the positive drug treatment group,LAB-RRTJ has a better effect on regulating gut microbiota diversity in colitis mice.Correlation analysis showed that infl ammatory factors were positively correlated with harmful bacteria and negatively correlated with beneficial bacteria which commonly found in some colitis mice.Taken together,our study demonstrated that LAB-RRTJ could alleviate DSS-induced colitis in mice through the modulation of infl ammatory cytokines and gut microbiota composition. 展开更多
关键词 Rosa roxburghii Tratt Lacticaseibacillus paracasei Ulcerative colitis Fermentation characteristics
下载PDF
Effects of Rosa roxburghii&edible fungus fermentation broth on immune response and gut microbiota in immunosuppressed mice
15
作者 Dechang Xu Jielun Hu +4 位作者 Yadong Zhong Yanli Zhang Wenting Liu Shaoping Nie Mingyong Xie 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期154-165,共12页
With the rise of probiotics fermentation in food industry,fermented foods have attracted worldwide attention.In this study,protective effects of Rosa roxburghii&edible fungus fermentation broth(REFB)on immune func... With the rise of probiotics fermentation in food industry,fermented foods have attracted worldwide attention.In this study,protective effects of Rosa roxburghii&edible fungus fermentation broth(REFB)on immune function and gut health in Cyclophosphamide induced immunosuppressed mice were investigated.Results showed that REFB could improve the immune organ index,and promote the proliferation and differentiation of splenic T lymphocytes.In addition,it attenuated intestinal mucosal damage and improved intestinal cellular immunity.REFB administration also up-regulated the expression of IL-4,INF-γ,TNF-α,T-bet and GATA-3 mRNA in small intestine.Furthermore,administration of REFB modulated gut microbiota composition and increased the relative abundance of beneficial genus,such as Bacteroides.It also increased the production of fecal short-chain fatty acids.These indicate that REFB has the potential to improve immunity,alleviate intestinal injury and regulate gut microbiota in immunosuppressed mice. 展开更多
关键词 Fermented foods Immunosuppressed mice Immune response Gut microbiota Short-chain fatty acids
下载PDF
Allergen degradation of bee pollen by lactic acid bacteria fermentation and its alleviatory effects on allergic reactions in BALB/c mice
16
作者 Shuting Yin Qiangqiang Li +5 位作者 Yuxiao Tao Enning Zhou Kun Wang Wanwen Chen Xiangxin Li Liming Wu 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期349-359,共11页
Food allergy as a global health problem threatens food industry.Bee pollen(BP)is a typical food with allergenic potentials,although it performs various nutritional/pharmacological functions to humans.In this study,lac... Food allergy as a global health problem threatens food industry.Bee pollen(BP)is a typical food with allergenic potentials,although it performs various nutritional/pharmacological functions to humans.In this study,lactic acid bacteria(LAB)were used to ferment Brassica napus BP for alleviating its allergenicity.Four novel allergens(glutaredoxin,oleosin-B2,catalase and lipase)were identified with significant decreases in LAB-fermented BP(FBP)than natural BP by proteomics.Meanwhile,metabolomics analysis showed significant increases of 28 characteristic oligopeptides and amino acids in FBP versus BP,indicating the degradation of LAB on allergens.Moreover,FBP showed alleviatory effects in BALB/c mice,which relieved pathological symptoms and lowered production of allergic mediators.Microbial high-throughput sequencing analysis showed that FBP could regulate gut microbiota and metabolism to strengthen immunity,which were closely correlated with the alleviation of allergic reactivity.These findings could contribute to the development and utilization of hypoallergenic BP products. 展开更多
关键词 Alleviatory effects Lactic acid bacteria fermentation Bee pollen allergen Gut microbiota Host metabolism
下载PDF
Impact of sourdough fermentation on nutrient transformations in cereal-based foods:Mechanisms,practical applications,and health implications
17
作者 Zhen Wang Luyang Wang 《Grain & Oil Science and Technology》 CAS 2024年第2期124-132,共9页
Sourdough is often considered a healthy choice and quality improver for use in cereal production due to its unique microbial composition and fermentation properties.During sourdough fermentation of cereals,biotransfor... Sourdough is often considered a healthy choice and quality improver for use in cereal production due to its unique microbial composition and fermentation properties.During sourdough fermentation of cereals,biotransformation of nutrients occurs,resulting in notable changes to proteins,carbohydrates,fats,vitamins,and minerals.Each nutrient undergoes specific transformations,providing various advantages for human health.Proteins undergo hydrolysis to produce small molecular weight peptides and amino acids that are more easily digested and absorbed by the human body.Carbohydrates break down to improve the digestibility and absorption of cereals and lower the glycemic index.Fatty acids experience oxidation to produce new substances with health benefits.Additionally,the application of sourdough fermentation can enhance the texture,flavor,and nutritional value of cereal foods while also extending their shelf life and improving food safety.In conclusion,sourdough fermentation has a broad range of applications in cereal food processing.Further research is encouraged to investigate the mechanisms and processes of sourdough fermentation to develop even more nutritious,healthy,and flavorful cereal-based foods. 展开更多
关键词 Sourdough fermentation Lactic acid bacteria PROTEOLYSIS Starch hydrolysis Low-GI NUTRIENTS
下载PDF
The influence of Lactobacillus plantarum fermentation in selenium-enriched Brassica napus L.:changes in the nutritional constituents,bioactivities and bioaccessibility
18
作者 Wen Wang Zhixiong He +3 位作者 Ruiying Zhang Min Li Zhenxia Xu Xia Xiang 《Oil Crop Science》 CSCD 2024年第2期81-90,共10页
Selenium(Se)-enriched Brassica napus L.is a valuable organic Se supplement.In this study,the fermentation broth enriched with organic Se(FFS)was prepared using Lactobacillus plantarum to ferment the substrate of Se-en... Selenium(Se)-enriched Brassica napus L.is a valuable organic Se supplement.In this study,the fermentation broth enriched with organic Se(FFS)was prepared using Lactobacillus plantarum to ferment the substrate of Se-enriched Brassica napus L.Significant increases were observed after fermentation in total sugars,reducing sugars,soluble proteins,total phenolic content(TPC),and total flavonoid content(TFC).The organic Se was retained at a concentration of 54.75 mg/g in the freeze-dried sample.Principal component analysis and cluster analysis showed good separation between the FFS and unfermented(FS)groups.Fragrant 2-ethyloxetane had the highest content among all volatiles,while sinapine had the highest content among all phenolic compounds.The fermentation process showed remarkable improvement in the abundance and concentration of volatile compounds and phenolic contents,making FFS exhibit strong antioxidant activity and inhibitory capacity againstα-glucosidase activity.The bioaccessibility of phenolic compounds was significantly greater in FFS compared to FS.ADMET analysis revealed that the majority of phenolic compounds contained in FFS did not exhibit mutagenicity toxicity,hepatotoxicity,skin sensitization,or blood-brain barrier penetration,indicating a favorable level of biosafety.Overall,our study provides a new insight into the further utilization of Se-enriched Brassica napus L.in foods. 展开更多
关键词 Se-enriched Brassica napus L. FERMENTATION Antioxidant activity Inhibitory activity BIOACCESSIBILITY
下载PDF
Adsorption,in vitro digestion and human gut microbiota regulation characteristics of three Poria cocos polysaccharides
19
作者 Fangming Zhang Hui Zheng +10 位作者 Tao Zheng Pan Xu Yao Xu Yuxin Cao Fan Jia Yiqiong Zeng Yubing Fan Kai He Xinwen Dai Fengfei Hou Yong Yang 《Food Science and Human Wellness》 SCIE CSCD 2024年第3期1685-1697,共13页
Poria cocos(PC)is a famous traditional Chinese medicine(TCM)and a widely used healthcare ingredient,which has antiobesity,enhancing immunity and improving sleep effects.Traditionally,only water-soluble poria polysacch... Poria cocos(PC)is a famous traditional Chinese medicine(TCM)and a widely used healthcare ingredient,which has antiobesity,enhancing immunity and improving sleep effects.Traditionally,only water-soluble poria polysaccharide(WSP)is extracted and applied for clinical application,while insoluble polysaccharide(alkali-soluble poria polysaccharide,ASP)is discarded as herb residue.However,the whole PC has also been historically utilized as functional herbal food.Considering the beneficial role of dietary fiber and the traditional use of PC,ASP may also contribute substantially to the therapy function of PC.Compared to WSP,little attention has been paid to ASP and ASP modified product carboxymethyl poria polysaccharide(CMP)which has been used as an antitumor adjuvant drug.In this study,the oil,cholesterol,metal ions and polyphenols adsorption ability,in vitro simulated digestive and the gut microbiota fermentation characteristics of WSP,ASP and CMP were studied to evaluate the functional values of three P.cocos polysaccharides(PCPs).The results showed that all three PCPs had good adsorption capacity on cholesterol,polyphenols and metal ions(Cd^(2+)/Zn^(2+)/Mg^(2+)),among which ASP showed the highest capacity than WSP and CMP.The adsorption capacity of all three PCPs on heavy metal ions(Cd^(2+)/Zn^(2+))was stronger than that of non-heavy metal ions(Mg^(2+));The in vitro digestibility of all three PCPs was very low,but WSP was slightly higher than ASP and CMP;Moreover,the indigestible residue of all three PCPs could improve the richness and diversity of gut microbiota,among which ASP had the greatest influence.In general,ASP and CMP could significantly promote the proliferation of some probiotics and inhibit the growth of some harmful bacteria.The gut microbiota diversity of CMP was reduced,but the richness of probiotics,especially Parabacteroides distasonis was significantly enhanced compared with the ASP group,and the growth of harmful bacteria Klebsiella pneumoniae was inhibited after CMP treatment.The short-chain fatty acids(SCFAs)analysis results showed that all three PCPs could significantly promote the production of acetic acid,propionic acid and the total acid content compared with blank control group,and SCFAs producing activity was positively correlated with the proliferative capacity of probiotics.Taken together,the good adsorption characteristics and gut microbiota regulatory activity of ASP may lay foundation for its lipid-lowering and immune-improving function.Additionally,the probiotic effect of CMP and ASP indicated that except for only use the water extract of PC in clinic,CMP and ASP also can be used in healthcare to take full advantage of this valuable medicine. 展开更多
关键词 Poria cocos polysaccharides Alkali-soluble poria polysaccharide Carboxymethyl poria polysaccharide Adsorption characteristics In vitro simulated digestion In vitro simulated gut microbiota fermentation
下载PDF
The Advantages of Methane Production by Combined Fermentation of Lignite and Wheat Straw
20
作者 Jiayuan Gu 《Advances in Bioscience and Biotechnology》 CAS 2024年第1期1-14,共14页
Biogasification of coal is important for clean utilization of coal. Experiments on the fermentation of single lignite, single straw and their mixture were performed to explore the variation characteristics of gas prod... Biogasification of coal is important for clean utilization of coal. Experiments on the fermentation of single lignite, single straw and their mixture were performed to explore the variation characteristics of gas production potential, microbial community and methanogenic metabolic pathways of mixture. Research has shown that mixed fermentation of lignite and straw significantly promoted biomethane production. The abundance of hydrolytic acidifying functional bacteria genera (Sphaerochaeta, Lentimicrobium) in mixed fermentation was higher than that in the fermentation of single lignite and single straw. The abundance of some key CAZy metabolic enzyme gene sequences in mixed fermentation group was increased, which was favorable to improve methane production. Aceticlastic methanogenesis was the most critical methanogenic pathway and acetic acid pathway was more competitive in methanogenic mode during peak fermentation. Macrogenomics provided theoretical support for the claim that mixed fermentation of coal and straw promoted biomethane metabolism, which was potentially valuable in expanding methanogenesis from mixed fermentation of lignite with different biomasses. 展开更多
关键词 LIGNITE Wheat Straw Mixed Fermentation Microbial Community Macrogenomics
下载PDF
上一页 1 2 43 下一页 到第
使用帮助 返回顶部