In this paper, we give a definition of the Fermi function, or the so-called Woods-Saxon potential, a well-known potential in nuclear physics;then, we give a few of its applications as examples. Some important integral...In this paper, we give a definition of the Fermi function, or the so-called Woods-Saxon potential, a well-known potential in nuclear physics;then, we give a few of its applications as examples. Some important integrals, which involve this function, are computed discussing the integrability and convergence of these integrals. Following, we derive formulae that encounter the above-mentioned function to get nuclear and generalized moments;the radial Fourier transformation is also exposed. Some related applications are then given that use such important integrals;in particular, we give the computation in conjunction with the problem of getting the optical-model potential for heavy-ion interactions at intermediate energies. Finally, we conclude with important remarks to do with the evolution of the subject.展开更多
An efficient method for the analytic evaluation of the plasma dispersion function for the Fermi-Dirac distribution is proposed.The new method has been developed using the binomial expansion theorem and the Gamma funct...An efficient method for the analytic evaluation of the plasma dispersion function for the Fermi-Dirac distribution is proposed.The new method has been developed using the binomial expansion theorem and the Gamma functions.The general formulas obtained for the plasma dispersion function are utilized for the evaluation of the response function.The resulting series present better convergence rates.Several acceleration techniques are combined to further improve the efficiency.The obtained results for the plasma dispersion function are in good agreement with the known numerical data.展开更多
The dependences of Fermi-level pinning on interface state densities for the metal-dielectric, ploycrystalline silicon-dielectric, and metal silicide-dielectric interfaces are investigated by calculating their effectiv...The dependences of Fermi-level pinning on interface state densities for the metal-dielectric, ploycrystalline silicon-dielectric, and metal silicide-dielectric interfaces are investigated by calculating their effective work functions and their pinning factors. The Fermi-level pinning factors and effective work functions of the metal-dielectric interface are observed to be more susceptible to the increasing interface state densities, differing significantly from that of the ploycrystalline silicon-dielectric interface and the metal silicide-dielectric interface. The calculation results indicate that metal silicide gates with high-temperature resistance and low resistivity are a more promising choice for the design of gate materials in metal-oxide semiconductor(MOS) technology.展开更多
文摘In this paper, we give a definition of the Fermi function, or the so-called Woods-Saxon potential, a well-known potential in nuclear physics;then, we give a few of its applications as examples. Some important integrals, which involve this function, are computed discussing the integrability and convergence of these integrals. Following, we derive formulae that encounter the above-mentioned function to get nuclear and generalized moments;the radial Fourier transformation is also exposed. Some related applications are then given that use such important integrals;in particular, we give the computation in conjunction with the problem of getting the optical-model potential for heavy-ion interactions at intermediate energies. Finally, we conclude with important remarks to do with the evolution of the subject.
文摘An efficient method for the analytic evaluation of the plasma dispersion function for the Fermi-Dirac distribution is proposed.The new method has been developed using the binomial expansion theorem and the Gamma functions.The general formulas obtained for the plasma dispersion function are utilized for the evaluation of the response function.The resulting series present better convergence rates.Several acceleration techniques are combined to further improve the efficiency.The obtained results for the plasma dispersion function are in good agreement with the known numerical data.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61376096,61327813,and 11234007)
文摘The dependences of Fermi-level pinning on interface state densities for the metal-dielectric, ploycrystalline silicon-dielectric, and metal silicide-dielectric interfaces are investigated by calculating their effective work functions and their pinning factors. The Fermi-level pinning factors and effective work functions of the metal-dielectric interface are observed to be more susceptible to the increasing interface state densities, differing significantly from that of the ploycrystalline silicon-dielectric interface and the metal silicide-dielectric interface. The calculation results indicate that metal silicide gates with high-temperature resistance and low resistivity are a more promising choice for the design of gate materials in metal-oxide semiconductor(MOS) technology.