期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Polypyrrole Chitosan Cobalt Ferrite Nanoparticles Composite Layer for Measuring the Low Concentration of Fluorene Using Surface Plasmon Resonance
1
作者 A.R.Sadrolhosseini M.Naseri M.K.Halimah 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第5期111-114,共4页
Fluorene is a polycyclic aromatic hydrocarbon, which is a hazardous toxic chemical in the environment. The measurement of low concentrations of fluorene is a subject of intense interest in chemistry and in the environ... Fluorene is a polycyclic aromatic hydrocarbon, which is a hazardous toxic chemical in the environment. The measurement of low concentrations of fluorene is a subject of intense interest in chemistry and in the environment. Polypyrrole chitosan cobalt ferrite nanoparticles are prepared using the electrochemical method. The prepared layers are characterized using field emission scanning electron microscopy, Fourier transform infrared spectroscopy, and energy dispersive spectroscopy. The layers are used to detect fluorene using the surface plasmon resonance technique at room temperature. The composite layer is evaluated after detection of fluorene using atomic force microscopy. The fluorene is bound on the layer, and the shift of the resonance angle is about 0.0052°, corresponding to the limitation of 0.01 ppm. 展开更多
关键词 Co NP Polypyrrole Chitosan Cobalt ferrite nanoparticles Composite Layer for Measuring the Low Concentration of Fluorene Using Surface Plasmon Resonance
下载PDF
Synthesis and characterization of carbon-coated cobalt ferrite nanoparticles 被引量:2
2
作者 Hamed Bakhshi Ali Shokuhfar Nima Vahdati 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第9期1104-1111,共8页
Cobalt ferrite nanoparticles(CFNPs) were prepared via a reverse micelle method. The CFNPs were subsequently coated with carbon shells by means of thermal chemical vapor deposition(TCVD). In this process, acetylene... Cobalt ferrite nanoparticles(CFNPs) were prepared via a reverse micelle method. The CFNPs were subsequently coated with carbon shells by means of thermal chemical vapor deposition(TCVD). In this process, acetylene gas(C2H2) was used as a carbon source and the coating was carried out for 1, 2, or 3 h at 750℃. The Ar/C2H2 ratio was 10:1. Heating during the TCVD process resulted in a NP core size that approached 30 nm; the thickness of the shell was less than 10 nm. The composition, structure, and morphology of the fabricated composites were characterized using X-ray diffraction, simultaneous thermal analysis, transmission electron microscopy, high-resolution transmission electron microscopy, and selected-area diffraction. A vibrating sample magnetometer was used to survey the samples' magnetic properties. The deposited carbon shell substantially affected the growth and magnetic properties of the CFNPs. Micro-Raman spectroscopy was used to study the carbon coating and revealed that the deposited carbon comprised graphite, multiwalled carbon nanotubes, and diamond-like carbon. With an increase in coating time, the intensity ratio between the amorphous and ordered peaks in the Raman spectra decreased, which indicated an increase in crystallite size. 展开更多
关键词 nanoparticles cobalt ferrite carbon coatings chemical vapor deposition Raman spectroscopy
下载PDF
Synthesis,Characterization and Biocompatibility of Potassium Ferrite Nanoparticles 被引量:3
3
作者 Lavanya Khanna N.K.Verma 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2014年第1期30-36,共7页
In the present study, morphology, size distribution, structure, biocompatibility and magnetic properties of potassium ferrite nanoparticles (KFeO2 NPs), synthesized by conventional sol-gel method have been reported.... In the present study, morphology, size distribution, structure, biocompatibility and magnetic properties of potassium ferrite nanoparticles (KFeO2 NPs), synthesized by conventional sol-gel method have been reported. The formation of spherical nanoparticles with orthorhombic structure has been confirmed by scanning electron microscopy and X-ray diffraction. The particle size, as obtained by transmission electron microscopy has been found to be in the range of 4-7 nm. Further, the size distribution has been scrutinized using Analyse-it software, where a platykurtic feature in the size distribution was observed. Fourier transform-infrared spectroscopy and thermogravimetric analysis showed the formation of metal (Fe, K) bonds at Neel temperature of 337℃. Vibrating sample magnetometer analysis revealed the superparamagnetic behaviour of the synthesized KFeO2 NPs, with saturation magnetization of 25.72 emu/g. In vitro cytotoxicity test, using MTTassay, on T cell lines (Jurkat cells) showed that KFeO2 NPs are biocompatible at a particle concentration of 100μg/ml. 展开更多
关键词 Potassium ferrite nanoparticles Magnetic nanoparticles Superparamagnetic behaviour BIOCOMPATIBILITY CYTOTOXICITY
原文传递
Antibacterial properties of copper-substituted cobalt ferrite nanoparticles synthesized by co-precipitation method 被引量:6
4
作者 Alireza Samavati A. F. Ismail 《Particuology》 SCIE EI CAS CSCD 2017年第1期158-163,共6页
Controlled growth and careful characterization of cobalt ferrite nanoparticles for antibacterial applica- tions are challenging. Copper-substituted cobalt ferrite nanoparticles (CuxCo1-xFe2O4), where x = 0.0, 0.3, 0... Controlled growth and careful characterization of cobalt ferrite nanoparticles for antibacterial applica- tions are challenging. Copper-substituted cobalt ferrite nanoparticles (CuxCo1-xFe2O4), where x = 0.0, 0.3, 0.5, 0.7 and 1.0, were synthesized using an economical and simple co-precipitation technique. The crys- tal structure and antibacterial properties of the samples as a function of Cu-substituted content were systematically studied. With increasing Cu concentration, the nanopartide size decreased from ~30 to ~20 nm. The Fourier transform infra-red spectra exhibit two prominent fundamental absorption bands, at ~595 and 419 cm^-1. These bands correspond to intrinsic stretching vibrations of metals at tetrahedral and octahedral sites, respectively. The Raman scattering results reveal that increasing the Cu content enhances the local disorder at both tetrahedral and octahedral sub lattices. The results indicate that the substitution of Co with Cu in cobalt ferrite nanoparticles strongly influences the microstructure, crystal structure, and oarticle diameter, and also improves the antibacterial properties. 展开更多
关键词 Cobalt ferrite nanoparticles X-ray diffraction Raman spectroscopy Antibacterial properties
原文传递
Influence of particle size and temperature on the dielectric properties of CoFe_2O_4 nanoparticles 被引量:2
5
作者 Deepshikha Rathore Rajnish Kurchania R.K.Pandey 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第4期408-414,共7页
The objective of this study was to establish the dielectric properties of CoFe2O4 nanoparticles with particle sizes that varied from 28.6 to 5.8 nm. CoFe2O4 nanoparticles were synthesized using a chemical coprecipitat... The objective of this study was to establish the dielectric properties of CoFe2O4 nanoparticles with particle sizes that varied from 28.6 to 5.8 nm. CoFe2O4 nanoparticles were synthesized using a chemical coprecipitation method. The particle sizes were calculated accord-ing to the Scherrer formula using X-ray diffraction (XRD) peaks, and the particle size distribution curves were constructed by using field-emission scanning electron microscopy (FESEM) images. The dielectric permittivity and loss tangents of the samples were determined in the frequency range of 1 kHz to 1 MHz and in the temperature range of 300 to 10 K. Both the dielectric permittivity and the loss tangent were found to decrease with increasing frequency and decreasing temperature. For the smallest CoFe2O4 nanoparticle size, the dielectric per-mittivity and loss tangent exhibited their highest and lowest values, respectively. This behavior is very useful for materials used in devices that operate in the microwave or radio frequency ranges. 展开更多
关键词 cobalt ferrite nanoparticles coprecipitation dielectric properties PERMITTIVITY loss tangent particle size temperature
下载PDF
Synthesis, characterization and magnetic properties of KFeO_(2) nanoparticles prepared by a simple egg white solution route
6
作者 Thongsuk Sichumsaeng Nutthakritta Phromviyo +3 位作者 Supree Pinitsoontorn Pinit Kidkhunthod Narong Chanlek Santi Maensiri 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第1期128-135,共8页
Nanoparticles of potassium ferrite(KFeO_(2))in this work were synthesized by a simple egg white solution method upon calcination in air at 773,873,and 973 K for 2 h.The effects of calcination temperature on the struct... Nanoparticles of potassium ferrite(KFeO_(2))in this work were synthesized by a simple egg white solution method upon calcination in air at 773,873,and 973 K for 2 h.The effects of calcination temperature on the structural and magnetic properties of the synthesized KFeO_(2) nanoparticles were investigated.By varying the calcination temperature,X-ray diffraction and transmission electron microscopy results indicated the changes in crystallinity and morphology including particle size,respectively.Notably,the reduction in particle size of the synthesized KFeO_(2) was found to have a remarkable influence on the magnetic properties.At room temperature,the synthesized KFeO_(2) nanoparticles prepared at 873 K exhibited the highest saturation magnetization(M_(S))of 2.07×10^(4) A·m^(−1).In addition,the coercivity(H_(C))increased from 3.51 to 16.89 kA·m^(−1) as the calcination temperature increased to 973 K.The zero-field cooled(ZFC)results showed that the blocking temperatures(T_(B))of about 125 and 85 K were observed in the samples calcined at 773 and 873 K,respectively.Therefore,this work showed that the egg white solution method is simple,cost effective,and environmentally friendly for the preparation of KFeO_(2) nanoparticles. 展开更多
关键词 egg white solution method potassium ferrite nanoparticles magnetic properties FERROMAGNETISM
下载PDF
Remarkable catalysis of spinel ferrite XFe2O4(X=Ni,Co,Mn,Cu,Zn)nanoparticles on the dehydrogenation properties of LiAlH_(4):An experimental and theoretical study 被引量:1
7
作者 Sheng Wei Jiaxi Liu +9 位作者 Yongpeng Xia Huanzhi Zhang Riguang Cheng Lixian Sun Fen Xu Pengru Huang Federico Rosei Aleskey A.Pimerzin Hans Jüergen Seifert Hongge Pan 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第16期189-203,共15页
Safe,compact,lightweight and cost-effective hydrogen storage is one of the main challenges that need to be addressed to effectively deploy the hydrogen economy.LiAlH_(4),as a solid-state hydrogen storage material,pres... Safe,compact,lightweight and cost-effective hydrogen storage is one of the main challenges that need to be addressed to effectively deploy the hydrogen economy.LiAlH_(4),as a solid-state hydrogen storage material,presents several advantages such as high hydrogen storage capacity,low price and abundant sources.Unfortunately,neither thermodynamic nor kinetic properties of dehydrogenation for LiAlH_(4)can fulfill the requirements of practical application.Thus,a series of spinel ferrite nanoparticles such as XFe_(2)O_(4)(X=Ni,Co,Mn,Cu,Zn,Fe)were prepared by using the modified thermal decomposition method,and then doped into LiAlH_(4)by using ball milling.Our results show that LiAlH_(4)doped with 7 wt%NiFe_(2)O_(4)starts to release hydrogen at 69.1°C,and the total amount of hydrogen released is 7.29 wt%before 300°C.The activation energies of the two-step hydrogen release reactions of LiAlH_(4)doped with 7 wt%NiFe_(2)O_(4)are 42.32 kJ mol^(-1)and 71.42 k J mol,which are 59.0%and 63.6%lower than those of as-received LiAlH_(4),respectively.Combining the density functional theory(DFT)calculations,we reveal that both the presence of Ni FeOand in-situ formed AlNiin ball-milling decrease the desorption energy barrier of Al-H bonding in LiAlH_(4)and accelerate the breakdown of Al-H bonding through the interfacial charge transfer and the dehybridization of the Al-H cluster.Thus,the experimental and theoretical results open a new avenue toward designing high effective catalysts applied to LiAlH_(4)as a candidate for hydrogen storage. 展开更多
关键词 Hydrogen storage Lithium aluminum Spinel ferrite nanoparticles
原文传递
Structural and magnetic properties of turmeric functionalized CoFe_2O_4 nanocomposite powder
8
作者 E Mehran S Farjami Shayesteh M Sheykhan 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第10期418-422,共5页
The structural and magnetic properties of the synthesized pure and functionalized CoFe2O4magnetic nanoparticles(NPs) are studied by analyzing the results from the x-ray diffraction(XRD), transmission electron microsco... The structural and magnetic properties of the synthesized pure and functionalized CoFe2O4magnetic nanoparticles(NPs) are studied by analyzing the results from the x-ray diffraction(XRD), transmission electron microscopy(TEM), FT–IR spectroscopy, thermogravimetry(TG), and vibrating sample magnetometer(VSM). To extract the structure and lattice parameters from the XRD analysis results, we first apply the pseudo-Voigt model function to the experimental data obtained from XRD analysis and then the Rietveld algorithm is used in order to optimize the model function to estimate the true intensity values. Our simulated intensities are in good agreement with the experimental peaks, therefore, all structural parameters such as crystallite size and lattice constant are achieved through this simulation. Magnetic analysis reveals that the synthesized functionalized NPs have a saturation magnetization almost equal to that of pure nanoparticles(PNPs). It is also found that the presence of the turmeric causes a small reduction in coercivity of the functionalized NPs in comparison with PNP. Our TGA and FTIR results show that the turmeric is bonded very well to the surface of the NPs. So it can be inferred that a nancomposite(NC) powder of turmeric and nanoparticles is produced. As an application, the anti-arsenic characteristic of turmeric makes the synthesized functionalized NPs or NC powder a good candidate for arsenic removal from polluted industrial waste water. 展开更多
关键词 cobalt ferrite nanoparticles structural properties magnetic properties turmeric
下载PDF
Physical Properties Study of Zn_(0.5)Mn_(0.5−x)Li_(2x)Fe_(2)O_(4) Nanoparticle Series that Prepared by Co-Precipitation Method
9
作者 N.A.Elthair Yousef A.Alsabah +3 位作者 Eltayeb M.Mustafa Abdelrahman A.Elbadawi Abdal Sakhi Suliman Ali A.S.Marouf 《Journal of Materials Science and Chemical Engineering》 2019年第11期15-21,共7页
Co-precipitation is an important issue in chemical analysis, where it is often undesirable, but in some cases, it can be exploited. The Zn0.5Mn0.5&#8722;xLi2xFe2O4 nanomaterials (x = 0.0, 0.1, 0.2, 0.3 and 0.4) wa... Co-precipitation is an important issue in chemical analysis, where it is often undesirable, but in some cases, it can be exploited. The Zn0.5Mn0.5&#8722;xLi2xFe2O4 nanomaterials (x = 0.0, 0.1, 0.2, 0.3 and 0.4) was afforded by utilizing co-precipitation method. The structural and optical characteristics were analyzed for the samples employing X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FTIR) and Ultraviolet-visible spectrophotometer (UV-Vis). XRD revealed that the structure of certain nanoparticles is a cubic spinel with space group (Fd-3m) and crystallite size in the scale 124 - 150 nm. Lattice parameter was determined to increments with Li+1 and that may occur due to the larger ionic radius of the Li1+ ion. FTIR spectroscopy confirmed the form of spinel ferrite and explicated the properties of absorption bands approximately 593, 1111, 1385, 1640, 2922 and 3430. The energy band gap was estimated for all samples with diverse ratios and was observed in the range of 2.58 - 2.52 eV. 展开更多
关键词 Zn_(0.5)Mn_(0.5-x)Li_(2x)Fe_(2)O_(4) Nano ferrites XRD UV.vis FTIR Co-Precipitation Spinel Structure ferrite nanoparticles Optical Properties
下载PDF
Theory, simulation and experiment of optical properties of cobalt ferrite(CoFe2O4) nanoparticles
10
作者 Elham Gharibshahi Brandon D.Young +1 位作者 Amar S.Bhalla Ruyan Guo 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第22期180-187,共8页
Optical properties of cobalt ferrite(CoFe2O4) nanoparticles are modeled and simulated employing finite element analysis(FEA) and density functional theory(DFT) for different particle sizes. The simulated absorption ma... Optical properties of cobalt ferrite(CoFe2O4) nanoparticles are modeled and simulated employing finite element analysis(FEA) and density functional theory(DFT) for different particle sizes. The simulated absorption maxima of electronic excitations is red-shifted from 330 nm to 410 nm using finite element analysis and from 331.27 nm to 409.07 nm using quantum mechanical method, with increasing particle sizes from 40 nm to 50 nm. The measured absorption maxima matched the simulated results reasonably well and red-shifted to longer wavelengths from 315.59 nm to 426.73 nm with the increase in particle sizes from 30 nm to 50 nm. The DFT simulated, FEA simulated and experimentally derived optical band gap energies, Eg, were also acquired and compared. The simulated Egvalues decreased from 3.228 to 2.478 e V and from 3.266 to 2.456 e V, while the experimental Egvalue decreased from 3.473 to 2.697 e V, with increasing the particle sizes. The research demonstrated that the optical absorption of CoFe2O4 nanoparticles can be described with high accuracy using the quantum mechanical interpretation based on DFT. FEA based simulations have shown limitations for smaller(< 40 nm) nanoparticles likely due to the increased surface scattering that prevented a stable solution for simulations beyond the quasistatic limit. The DFT computational tool developed by this study can enable both the low cost computation and highly reliable prediction of optical absorption properties and optical band edges, and thus contribute to understanding and design of CoFe2O4 nanoparticle properties prior to fabrication and functionalization of them, for a wide range of applications especially for sensing and photonic wave modulations. 展开更多
关键词 Cobalt ferrite(CoFe2O4)nanoparticles Optical properties Band gap energy DFT simulation of nanoparticles COMSOL simulation of nanoparticles
原文传递
Study of cobalt ferrite nanosuspensions for low-frequency ferromagnetic hyperthermia 被引量:1
11
作者 Bronislav E.Kashevsky Vladimir E.Agabekov +4 位作者 Sergei B.Kashevsky Katsiaryna A.Kekalo Elena Yu.Manina Igor V.Prokhorov Vladimir S.Ulashchik 《Particuology》 SCIE EI CAS CSCD 2008年第5期322-333,共12页
High-coercive cobalt ferrite nanoparticles were synthesized and studied for magnetic hyperthermia by direct injection of their suspension into a tumor and application of a strong audio-frequency magnetic field for hea... High-coercive cobalt ferrite nanoparticles were synthesized and studied for magnetic hyperthermia by direct injection of their suspension into a tumor and application of a strong audio-frequency magnetic field for heating. Physical (dynamic magnetic hysteresis and heat generation in both liquid and solid dispersions), biological (toxicity and penetration of particles in therapeutic quantities into mouse tumor tissue) as well as other properties of the particles were studied. A model was developed to describe the magnetodynamics in suspensions of magnetic nanoclusters with an account for both Brownian and regular rotations, to provide understanding of observed phenomena. The experimental and theoretical techniques developed have formed a basis for controllable synthesis of the magnetic nanoparticles for low-frequency heat generation in medical and other applications. 展开更多
关键词 Cobalt ferrite nanoparticles Magnetic suspensions Dynamic magnetic hysteresis Medical hyperthermia
原文传递
Influences of spinel type and polymeric surfactants on the size evolution of colloidal magnetic nanocrystals (MFe2O4, M = Fe, Mn)
12
作者 Tahereh R. BASTAMI Mohammad H. ENTEZARI +1 位作者 Chiwai KWONG Shizhang QIAO 《Frontiers of Chemical Science and Engineering》 SCIE EI CAS CSCD 2014年第3期378-385,共8页
Two types of polymeric surfactants, PEG300 and PVP40000, were used for the preparation of magnetic ferrite MFe2O4 (M- Mn, Fe) colloidal nanocrystals using a solvothermal reaction method. The effect of spinel type ef... Two types of polymeric surfactants, PEG300 and PVP40000, were used for the preparation of magnetic ferrite MFe2O4 (M- Mn, Fe) colloidal nanocrystals using a solvothermal reaction method. The effect of spinel type effect on the size evolution of various nanoparticles was investigated. It was found that Fe3O4 nanoparticles exhibited higher crystalinity and size evolution than MnFe2O4 nanoparticles with use of the two surfactants. It is proposed that this observation is due to fewer tendencies of surfactants on the surface of Fe3O4 building blocks nanoparticles than MnFe2O4. Less amounts of surfactant or capping agent on the surface of nanoparticles lead to the higher crystalibity and larger size. It is also suggested that the type of spinel (normal or inverted spinel) plays a key role on the affinity of the polymeric surfactant on the surface of building blocks. 展开更多
关键词 spinel type polymeric surfactant size evolution mangnetic ferrite nanoparticle
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部