期刊文献+
共找到278篇文章
< 1 2 14 >
每页显示 20 50 100
Grain boundary engineering for enhancing intergranular damage resistance of ferritic/martensitic steel P92
1
作者 Lei Peng Shang-Ming Chen +6 位作者 Jing-Yi Shi Yong-Jie Sun Yi-Fei Liu Yin-Zhong Shen Hong-Ya He Hui-Juan Wang Jie Tian 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第5期186-199,共14页
Ferritic/martensitic(F/M)steel is widely used as a structural material in thermal and nuclear power plants.However,it is susceptible to intergranular damage,which is a critical issue,under service conditions.In this s... Ferritic/martensitic(F/M)steel is widely used as a structural material in thermal and nuclear power plants.However,it is susceptible to intergranular damage,which is a critical issue,under service conditions.In this study,to improve the resistance to intergranular damage of F/M steel,a thermomechanical process(TMP)was employed to achieve a grain boundary engineering(GBE)microstructure in F/M steel P92.The TMP,including cold-rolling thickness reduction of 6%,9%,and 12%,followed by austenitization at 1323 K for 40 min and tempering at 1053 K for 45 min,was applied to the as-received(AR)P92 steel.The prior austenite grain(PAG)size,prior austenite grain boundary character distribution(GBCD),and connectivity of prior austenite grain boundaries(PAGBs)were investigated.Compared to the AR specimen,the PAG size did not change significantly.The fraction of coincident site lattice boundaries(CSLBs,3≤Σ≤29)and Σ3^(n) boundaries along PAGBs decreased with increasing reduction ratio because the recrystallization fraction increased with increasing reduction ratio.The PAGB connectivity of the 6%deformed specimen slightly deteriorated compared with that of the AR specimen.Moreover,potentiodynamic polarization studies revealed that the intergranular damage resistance of the studied steel could be improved by increasing the fraction of CSLBs along the PAGBs,indicating that the TMP,which involves low deformation,could enhance the intergranular damage resistance. 展开更多
关键词 Grain boundary engineering ferritic/martensitic steel Prior austenite grain boundary character distribution Grain boundary connectivity Intergranular damage resistance
下载PDF
Effects of Orthogonal Heat Treatment on Microstructure and Mechanical Properties of GN9 Ferritic/Martensitic Steel
2
作者 Tingwei Ma Xianchao Hao Ping Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第6期289-300,共12页
Microstructure and mechanical properties of GN9 Ferritic/Martensitic steel for sodium-cooled fast reactors have been investigated through orthogonal design and analysis.Scanning electron microscopy(SEM),transmission e... Microstructure and mechanical properties of GN9 Ferritic/Martensitic steel for sodium-cooled fast reactors have been investigated through orthogonal design and analysis.Scanning electron microscopy(SEM),transmission electron microscopy(TEM),differential scanning calorimeter(DSC),tensile and impact tests were used to evaluate the heat treatment parameters on yield strength,elongation and ductile-to-brittle transition temperature(DBTT).The results indicate that the microstructures of GN9 steel after orthogonal heat treatments consist of tempered martensite,M23C6,MX carbides and MX carbonitrides.The average prior austenite grains increase and the lath width decreases with the austenitizing temperature increasing from 1000°C to 1080°C.Tempering temperature is the most important factor that influences the dislocation evolution,yield strength and elongation compared with austenitizing tempera-ture and cooling methods.Austenitizing temperature,tempering temperature and cooling methods show interactive effects on DBTT.Carbide morphology and distribution,which is influenced by austenitizing and tempering tempera-tures,is the critical microstructural factor that influences the Charpy impact energy and DBTT.Based on the orthogo-nal design and microstructural analysis,the optimal heat treatment of GN9 steel is austenitizing at 1000°C for 0.5 h followed by air cooling and tempering at 760°C for 1.5 h. 展开更多
关键词 ferritic/martensitic steel Orthogonal design m23C6 carbide Ductile-to-brittle transition temperature
下载PDF
Strengthening mechanisms of reduced activation ferritic/martensitic steels:A review 被引量:6
3
作者 Jin-hua Zhou Yong-feng Shen Nan Jia 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第3期335-348,共14页
This review summarizes the strengthening mechanisms of reduced activation ferritic/martensitic(RAFM)steels.High-angle grain boundaries,subgrain boundaries,nano-sized M_(23)C_(6),and MX carbide precipitates effectively... This review summarizes the strengthening mechanisms of reduced activation ferritic/martensitic(RAFM)steels.High-angle grain boundaries,subgrain boundaries,nano-sized M_(23)C_(6),and MX carbide precipitates effectively hinder dislocation motion and increase high-temperature strength.M23C6 carbides are easily coarsened under high temperatures,thereby weakening their ability to block dislocations.Creep properties are improved through the reduction of M23C6 carbides.Thus,the loss of strength must be compensated by other strengthening mechanisms.This review also outlines the recent progress in the development of RAFM steels.Oxide dispersion-strengthened steels prevent M23C6 precipitation by reducing C content to increase creep life and introduce a high density of nano-sized oxide precipitates to offset the reduced strength.Severe plastic deformation methods can substantially refine subgrains and MX carbides in the steel.The thermal deformation strengthening of RAFM steels mainly relies on thermo-mechanical treatment to increase the MX carbide and subgrain boundaries.This procedure increases the creep life of TMT(thermo-mechanical treatment)9Cr-1W-0.06Ta steel by~20 times compared with those of F82H and Eurofer 97 steels under 550℃/260 MPa. 展开更多
关键词 reduced activation ferritic/martensitic steel strengthening mechanism high-angle grain boundary subgrain boundary PRECIPITATE
下载PDF
Cavity Swelling in Three Ferritic-Martensitic Steels Irradiated by 196 MeV Kr Ions 被引量:1
4
作者 LI Yuan-Fei SHEN Tie-Long +12 位作者 GAO Xing YAO Cun-Feng WEI Kong-Fang SUN Jian-Rong LI Bing-Sheng ZHU Ya-Bin PANG Li-Long CUI Ming-Huan CHANG Hai-Long WANG Ji ZHU Hui-Ping HU Bi-Tao WANG Zhi-Guang 《Chinese Physics Letters》 SCIE CAS CSCD 2013年第12期83-86,共4页
We report on cavity swelling at peak damage regions of three ferritic-martensitic(FM)steels(NHS,RAFM and T91)irradiated by 196 MeV Kr ions at different temperatures(450/550℃).Cavity configurations of the irradiated s... We report on cavity swelling at peak damage regions of three ferritic-martensitic(FM)steels(NHS,RAFM and T91)irradiated by 196 MeV Kr ions at different temperatures(450/550℃).Cavity configurations of the irradiated specimens are investigated by transmission electron microscopy with cross-section technique.For home-made reduced activation ferritic-martensitic(RAFM)and T91 steels irradiated at 450℃,both large size and bimodal size distribution of the cavity are found in their peak damage regions,whereas novel high silicon(NHS)steel exhibits good swelling resistance at different irradiation temperatures.Temperature relativity of the cavity swelling in NHS,RAFM and T91 steels is discussed briefly. 展开更多
关键词 martensitic ferritic steel
下载PDF
Overview of the Research and Development for Reduced Activation Ferritic/Martensitic Steel CLF-1 被引量:3
5
作者 WANG Pinghuai XU Zengyu +2 位作者 CHEN Jiming LIU Shi LI Xiongwei 《Southwestern Institute of Physics Annual Report》 2006年第1期162-163,共2页
Recent accomplishment by the SWIP for the reduced activation ferritic/martensitic steel CLF-1 development has been reviewed. It's found that CLF- 1 steel has better room temperature tensile properties than Eurofer97 ... Recent accomplishment by the SWIP for the reduced activation ferritic/martensitic steel CLF-1 development has been reviewed. It's found that CLF- 1 steel has better room temperature tensile properties than Eurofer97 steel and has a fully martensitic microstructure. 展开更多
关键词 Reduced activation ferritic/martensitic steel Tensile properties fully martensitic microstructure
下载PDF
Precipitation behavior and martensite lath coarsening during tempering of T/P92 ferritic heat-resistant steel 被引量:7
6
作者 Lin-qing Xu Dan-tian Zhang +4 位作者 Yong-chang Liu Bao-qun Ning Zhi-xia Qiao Ze-sheng Yan Hui-jun Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第5期438-447,共10页
Tempering is an important process for T/P92 ferritic heat-resistant steel from the viewpoint of microstructure control, as it facili- tates the formation of final tempered martensite under serving conditions. In this ... Tempering is an important process for T/P92 ferritic heat-resistant steel from the viewpoint of microstructure control, as it facili- tates the formation of final tempered martensite under serving conditions. In this study, we have gained deeper insights on the mechanism underlying the microstructural evolution during tempering treatment, including the precipitation of carbides and the coarsening of martensite laths, as systematically analyzed by optical microscopy, transmission electron microscopy, and high-resolution transmission electron mi- croscopy. The chemical composition of the precipitates was analyzed using energy dispersive X-ray spectroscopy. Results indicate the for- mation of M3C (cementite) precipitates under normalized conditions. However, they tend to dissolve within a short time of tempering, owing to their low thermal stability. This phenomenon was substantiated by X-ray diffraction analysis. Besides, we could observe the precipitation of fine carbonitrides (MX) along the dislocations. The mechanism of carbon diffusion controlled growth of M23C6 can be expressed by the Zener's equation. The movement of Y-junctions was determined to be the fundamental mechanism underlying the martensite lath coarsening process. Vickers hardness was estimated to determine their mechanical properties. Based on the comprehensive analysis of both the micro- structural evolution and hardness variation, the process of tempering can be separated into three steps. 展开更多
关键词 ferritic steel heat resisting TEmPERING PRECIPITATION martensitE COARSENING
下载PDF
Dissolution Behavior of Delta Ferrites in Martensitic Heat-resistant Steel for Ultra Supercritical Units Blades 被引量:1
7
作者 LI Junru WANG Leiying +3 位作者 WANG Hailong ZHANG Pengfei GUO Fanghui ZHANG Xu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2022年第4期730-734,共5页
The dissolution behavior of delta ferrites in martensitic heat-resistant steel was studied.And the reason why the dissolution rate of delta ferrites decreased with dissolution time was discussed.The experimental resul... The dissolution behavior of delta ferrites in martensitic heat-resistant steel was studied.And the reason why the dissolution rate of delta ferrites decreased with dissolution time was discussed.The experimental results show that the chemical compositions of delta ferrites negligibly change with dissolution time.The decrease of dissolution rate of delta ferrites with dissolution time should be attributed to the change of shape and distribution of delta ferrites.The shape of delta ferrites tends to transfer from polygon to sphere with dissolution time,causing the decrease of specific surface area of delta ferrites.The distribution position of delta ferrites tends to transfer from boundaries of austenite grains to interior of austenite grains with dissolution time,decreasing the diffusion coefficient of alloy atoms.Both them decrease the dissolution rate of delta ferrites. 展开更多
关键词 delta ferrites dissolution rate martensitic heat-resistant steel phase transformation carbides
下载PDF
Electronic Structures and Alloying Behaviors of Ferrite Phases in High Co-Ni Secondary Hardened Martensitic Steels 被引量:1
8
作者 Guoying ZHANG+ and Meiguang ZENG (Northeastern University, Shenyang 110006, China) Guili LIU (Shenyang Polytechnic Universityt Shenyang 110023, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2000年第5期495-498,共4页
The electronic structure of ferrite (tempered martensite phase) in high Co-Ni secondary hardened martensitic steel has been investigated. The local density of states (LOOS) of alloying elements in the steel displays t... The electronic structure of ferrite (tempered martensite phase) in high Co-Ni secondary hardened martensitic steel has been investigated. The local density of states (LOOS) of alloying elements in the steel displays the relationship between solid solubility and the shape of the LDOS. The bond order integral (BOI) between atoms in the steel shows that the directional bonding of the p orbital of Si or C leads to the brittleness of the steel. At last, ΣBOI between atoms demonstrate that C, Co, Mn, Cr, Mo, Si strengthen the alloyed steel through solid-solution effects. 展开更多
关键词 Electronic Structures and Alloying Behaviors of ferrite Phases in High Co-Ni Secondary Hardened martensitic steels NI
下载PDF
Effect of heat treatment on the behavior ofδ-ferrite in B410D martensitic stainless steel
9
作者 CHANG E ZHAI Ruiyin 《Baosteel Technical Research》 CAS 2010年第1期60-63,共4页
The morphology and the evolution of δ-ferrite existing in B410D slabs, hot-rolled plates, annealed plates and quenched plates were studied through metallographic observation. Results show that δ-ferrite forms during... The morphology and the evolution of δ-ferrite existing in B410D slabs, hot-rolled plates, annealed plates and quenched plates were studied through metallographic observation. Results show that δ-ferrite forms during the solidification process and that it easily grows and increases in quantity during high temperature annealing. Band-shaped δ-ferrite in hotrolled plates is difficult to be eliminated by conventional heat treatment and hard to recrystallize. 展开更多
关键词 martensitic stainless steel Δ-ferritE RECRYSTALLIZATION
下载PDF
Influence of rapid heating process on the microstructure and tensile properties of high-strength ferrite–martensite dual-phase steel 被引量:2
10
作者 Pei Li Jun Li +2 位作者 Qing-ge Meng Wen-bin Hu Chun-fu Kuang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第9期933-941,共9页
Three low-carbon dual-phase (DP) steels with almost constant martensite contents of 20vo1% were produced by intercritical annealing at different heating rates and soaking temperatures. Microstructures prepared at lo... Three low-carbon dual-phase (DP) steels with almost constant martensite contents of 20vo1% were produced by intercritical annealing at different heating rates and soaking temperatures. Microstructures prepared at low temperature (1043 K, FH1) with fast-heating (300 K/s) show banded ferrite/martensite structure, whereas those soaked at high temperature (1103 K, FH2) with fast heating reveal blocky martensite uniformly distributed in the fine-grained ferrite matrix. Their mechanical properties were tested under tensile conditions and compared to a slow-heated (5 K/s) reference material (SH0). The tensile tests indicate that for a given martensite volume fraction, the yield strength and total elongation values are noticeably affected by the refinement of ferrite grains and the martensite morphology. Metallographic observations reveal the formation of microvoids at the ferrite/martensite interface in the SH0 and FH2 samples, whereas microvoids nucleate via the fracture of banded martensite particles in the FH1 specimen. In addition, analyses of the work-hardening behaviors of the DP microstructures using the differential Crussard-Jaoul technique demonstrate two stages of work hardening for all samples. 展开更多
关键词 high-strength steel martensitE ferritE HEATING mICROSTRUCTURE tensile properties grain refinement
下载PDF
Effect of Ni Contents on the Microstructure and Mechanical Properties of Martensitic Stainless Steel Guide Roll by Centrifugal Casting 被引量:1
11
作者 Villando Thursdiyanto Eun-Jae Bae Eung-Ryul Baek 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2008年第3期343-346,共4页
A novel process based on centrifugal casting was developed to produce martensitic stainless steel for guideroll materials. Centrifugal casting provides a lower production cost and less of the thermal cracking defects ... A novel process based on centrifugal casting was developed to produce martensitic stainless steel for guideroll materials. Centrifugal casting provides a lower production cost and less of the thermal cracking defects which normally occur in the overlaid welding process. In this study, the effects of Ni on the microstructure and mechanical properties of martensitic stainless steel were investigated. The results show that the addition of Ni resulted in a decrease in the volume fraction of delta ferrite and an increase in the volume fraction of the retained austenite, respectively. Moreover, a tensile strength of 1600 MPa with an elongation of 4% were obtained after tempering at 500℃ for 2 h. These values were higher than those obtained by using the conventional overlaid process. 展开更多
关键词 Centrifugal casting martensitic stainless steel Delta ferrite mechanical properties
下载PDF
Effect of cooling rate on microstructure and mechanical properties of CB2 tempered martensitic steel
12
作者 Yu-lin Ma Yue Liu +2 位作者 Li-ping Zhang Xu Jiang Chun-ming Liu 《China Foundry》 SCIE 2020年第2期158-166,共9页
The cooling rate of casting has a significant effect on microstructure and mechanical properties of castings.The 9Cr-1.5Mo-1Co cast steel,referred to as CB2,is one of the most promising alloys for various cast compone... The cooling rate of casting has a significant effect on microstructure and mechanical properties of castings.The 9Cr-1.5Mo-1Co cast steel,referred to as CB2,is one of the most promising alloys for various cast components to be used under ultrasupercritical conditions.In this study,HRTEM,SEM,and XRD methods were used for qualitative and quantitative analyses of contents,phases,and sizes of the inclusions and precipitates,as well as microstructure observation of the tempered martensitic steel at different cooling rates.Traditional tensile tests were conducted to characterize the material mechanical properties.Results show that the size of the boron nitride and precipitate,the width of the martensite lath and the content of theδ-ferrite are reduced as the cooling rate increases from 5-8℃·min^-1(CB2-S steel)to 50-60℃·min^-1(CB2-F steel).The precipitates are mainly composed of M23C6 and a small amount of M3C.The average diameters of the M23C6 precipitates in CB2-F and CB2-S are 202 nm and 209 nm,respectively.The inclusions are mainly composed of BN,Al2O3 and MnO2,and the inclusion ratios are 0.1969%for the CB2-F and 0.06556%for CB2-S steel.The average martensite lath widths of CB2-F and CB2-S steels are 289 nm and 301 nm,respectively.Furthermore,the M3C having a diameter of about 150 nm and a thickness of 20 nm is observed in theδ-ferrite of the tempered CB2-S steel.The presence of theδ-ferrite reduces the precipitation strengthening and dislocation density in CB2-S steel.In addition,the lower cooling rate stabilizes theδ-ferrite structure at room temperature. 展开更多
关键词 tempered martensitic steel CASTING microstructure m23C6 mechanical properties INCLUSIONS Δ-ferritE
下载PDF
Development of high strength ferrite-martensite stainless steels ( FMSSs) for railway cargo transportation
13
作者 WANG Rumeng YE Xiaoning JIANG Laizhu 《Baosteel Technical Research》 CAS 2013年第3期57-63,共7页
Two ferrite-martensite stainless steels (FMSSs) were developed by Baosteel based on the T4003 composition, through optimizing the manganese and nickel contents ,reducing silicon, carbon and nitrogen contents, contro... Two ferrite-martensite stainless steels (FMSSs) were developed by Baosteel based on the T4003 composition, through optimizing the manganese and nickel contents ,reducing silicon, carbon and nitrogen contents, controlling remnant niobium and molybdenum ,adding sufficient titanium and controlling the processing. In this study ,the physical metallurgy of such FMSSs was investigated with the emphasis on the alloying effect on the phase balance during processing and the transformation behavior during welding for different microstructures. In addition, the mechanical behavior and the weldability were investigated. The results indicate that such steels have a good combination of strength and toughness and better weldability compared with the traditional 1. 4003 steel. Such high strength steels are highly suitable for railway cargo transportation where the wall thickness of the wagons can be reduced,resulting in weight savings. 展开更多
关键词 ferrite-martensite stainless steel microstructure mechanical properties WELDABILITY
下载PDF
Effects of Austenite Stabilization on the Onset of Martensite Transformation in T91 Steel 被引量:2
14
作者 Baoqun NING Yongchang LIU +2 位作者 Qingzhi SHI Zhiming GAO Liushuan YANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2008年第2期202-206,共5页
The influences of thermal stabilization of austenitic on the onset temperature for a martensite transformation in T91 ferritic heat-resistant steel were studied by high-resolution differential dilatometer. The phase t... The influences of thermal stabilization of austenitic on the onset temperature for a martensite transformation in T91 ferritic heat-resistant steel were studied by high-resolution differential dilatometer. The phase transformation kinetic information was obtained by adopting lever rule from the recorded dilatometric curves. The results show that an inverse stabilization, featured by the damage of "the atmosphere of carbon atoms" and the increase of the starting temperature for martensite transformation takes place when the T91 ferritic steel is isothermally treated above the Ms point, and it becomes strong with increasing the holding time. While the continued temperature for martensite transformation decreases gradually when isothermally holding at a temperature below Ms point. The observed inverse stabilization behavior could be attributed to the relatively high temperature of Ms point in the explored T91 ferritic heat-resistant steel. 展开更多
关键词 T91 ferritic heat-resistant steel Austenitic thermal stabilization martensitE mICROSTRUCTURE
下载PDF
Atomistic study on the microscopic mechanism of grain boundary embrittlement induced by small dense helium bubbles in iron
15
作者 Lei Peng Yong-Jie Sun +3 位作者 Jing-Yi Shi Yi-Fei Liu Shang-Ming Chen Liu-Liu Li 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第3期84-95,共12页
The helium bubbles induced by 14 MeV neutron irradiation can cause intergranular fractures in reduced activation ferritic martensitic steel,which is a candidate structural material for fusion reactors.In order to eluc... The helium bubbles induced by 14 MeV neutron irradiation can cause intergranular fractures in reduced activation ferritic martensitic steel,which is a candidate structural material for fusion reactors.In order to elucidate the susceptibility of different grain boundaries(GBs)to helium-induced embrittlement,the tensile fracture processes of 10 types of GBs with and without helium bubbles in body-centered cubic(bcc)iron at the relevant service temperature of 600 K were investigated via molecular dynamics methods.The results indicate that in the absence of helium bubbles,the GBs studied here can be classified into two distinct categories:brittle GBs and ductile GBs.The atomic scale analysis shows that the plastic deformation of ductile GB at high temperatures originates from complex plastic deformation mechanisms,including the Bain/Burgers path phase transition and deformation twinning,in which the Bain path phase transition is the most dominant plastic deformation mechanism.However,the presence of helium bubbles severely inhibits the plastic deformation channels of the GBs,resulting in a significant decrease in elongation at fractures.For bubble-decorated GBs,the ultimate tensile strength increases with the increase in the misorientation angle.Interestingly,the coherent twin boundary∑3{112}was found to maintain relatively high fracture strength and maximum failure strain under the influence of helium bubbles. 展开更多
关键词 Helium bubble Grain boundary EmBRITTLEmENT Reduced activation ferritic martensitic steel molecular dynamics Bain path
下载PDF
Stress-strain partitioning analysis of constituent phases in dual phase steel based on the modified law of mixture 被引量:7
16
作者 Shuang Kuang Yong-lin Kang +1 位作者 Hao Yu Ren-dong Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2009年第4期393-398,共6页
A more accurate estimation of stress-strain relationships for martensite and ferrite was developed, and the modified law of mixture was used to investigate the stress-strain partitioning of constituent phases in dual ... A more accurate estimation of stress-strain relationships for martensite and ferrite was developed, and the modified law of mixture was used to investigate the stress-strain partitioning of constituent phases in dual phase (DP) steels with two different martensite volume fractions. The results show that there exist great differences in the stress-strain contribution of martensite and ferrite to DP steel. The stress-strain partitioning coefficient is not constant in the whole strain range, but decreases with increasing the true strain of DP steel. The softening effect caused by the dilution of carbon concentration in martensite with the increase of martensite volume fraction has great influence on the strain contribution of martensite. The strain ratio of ferrite to martensite almost linearly increases with increasing the true strain of DP steel when the martensite volume fraction is 22%, because martensite always keeps elastic. But the strain ratio of ferrite to martensite varies indistinctively with the further increase in true strain of DP steel above 0.034 when the martensite volume fraction is 50%, because plastic deformation happens in martensite. The stress ratio ofmartensite to ferrite decreases monotonously with increasing the true strain of DP steel whether the martensite volume fraction is 22% or 50%. 展开更多
关键词 stress and strain partitioning dual phase steel ferritE martensitE
下载PDF
Effect of deformation and cooling rate on the transformation behavior and microstructure of X70 steels 被引量:11
17
作者 Zhiping Zhao Zhenmin Wang +1 位作者 Hongmei Zhang Lifeng Qiaol 《Journal of University of Science and Technology Beijing》 CSCD 2007年第5期410-413,共4页
The effects of the deformation in the non-recrystallization region of austenite and the cooling rate on the transformation behavior and microstructure of low-carbon low-alloy steel for pipeline application were studie... The effects of the deformation in the non-recrystallization region of austenite and the cooling rate on the transformation behavior and microstructure of low-carbon low-alloy steel for pipeline application were studied on the thermal-mechanical simulator Gleeble-1500. It was shown that an increase in deformation amount can greatly increase the nucleation site of ferrite when deformed in the non-recrystallization region of austenite, and an increase in nucleation ratio can greatly refine grains. When the cooling rate is accelerated, the driving force of nucleation is increased and the nucleation rate also improves. Ultra-refine grains can be obtained by controlled rolling. The high density of ferrite nucleus, which forms along the austenite grain boundary, twin interface, and deformation band are introduced in the matrix of austenite by the control of hot rolling, after which the microstructure can be refined. It was found that the acicular ferrite has a very fine sub-structure, high dislocation density, and a thin slab with ultra-fine grains. Small M/A islands and cementite are precipitated on the matrix of the slabs by the analysis technique of TEM and SEM. 展开更多
关键词 pipeline steel acicular ferrite DISLOCATION m/A island
下载PDF
Technical Issues for the Fabrication of a CN-HCCB-TBM Based on RAFM Steel CLF-1 被引量:7
18
作者 王平怀 谌继明 +3 位作者 付海英 刘实 李雄伟 许增裕 《Plasma Science and Technology》 SCIE EI CAS CSCD 2013年第2期133-136,共4页
Reduced activation ferritic/martensitic steel (RAFM) is recognized as the primary candidate structural material for ITER's test blanket module (TBM). To provide a material and property database for the design and... Reduced activation ferritic/martensitic steel (RAFM) is recognized as the primary candidate structural material for ITER's test blanket module (TBM). To provide a material and property database for the design and fabrication of the Chinese helium cooled ceramic breeding TBM (CN HCCB TBM), a type of RAFM steel named CLF-1 was developed and chaxacter^zed at the Southwestern Institute of Physics (SWIP), China. In this paper, the R&D status of CLF-1 steel and the technical issues in using CLF-1 steel to manufacture CN HCCB TBM were reviewed, including the steel manufacture and different welding technologies. Several kinds of property data have been obtained for its application to the design of the ITER TBM. 展开更多
关键词 reduced activation ferritic/martensitic steel ITER TBm fABRICATION fusionreactor
下载PDF
Microstructure and Property of Coarse Grain HAZ X80 Pipeline Steel 被引量:12
19
作者 ZHOU Yun XUE Xiao-huai +3 位作者 QIAN Bai-nian LI Jing-li SHAN Yi-Yin LOU Song-nian 《Journal of Iron and Steel Research International》 SCIE CAS CSCD 2005年第6期54-58,共5页
The coarse grain HAZ microstructure and property of X80 pipeline steel with different carbon content was investigated. The weld thermal simulation test was carried out on Gleeble 1500 thermal mechanical test machine. ... The coarse grain HAZ microstructure and property of X80 pipeline steel with different carbon content was investigated. The weld thermal simulation test was carried out on Gleeble 1500 thermal mechanical test machine. The Charpy tests were completed at --20 ℃ for evaluating the toughness of coarse grain heat affected zone (CGHAZ). The microstructure was examined by optical microscope (OM) and transmission electron microscopy (TEM), and the austenite constituent was quantified by X-ray diffraction. The results showed that the ultra-low carbon can improve the toughness of CGHAZ by suppressing the formation of carbide, decreasing the martensite austenite (M-A) constituent and increasing the residual austenite in the M A. 展开更多
关键词 X80 pipeline steel CGHAZ weld simulation fesC carbide ultra low carbon m-A constituent bainitic ferrite
下载PDF
Effect of Nb on the transformation kinetics of low carbon(manganese) steel during deformation of undercooled austenite 被引量:3
20
作者 Guoan Chen Wangyue Yang +1 位作者 Shouzhen Guo Zuqing Sun 《Journal of University of Science and Technology Beijing》 CSCD 2006年第5期411-415,共5页
The hot compression tests using Gleeble 1500 were performed by varying the true strain up to 1.6 (80% reduction) in Nbfree and Nb-microalloyed steels. The effect of Nb addition on the transformation kinetics during ... The hot compression tests using Gleeble 1500 were performed by varying the true strain up to 1.6 (80% reduction) in Nbfree and Nb-microalloyed steels. The effect of Nb addition on the transformation kinetics during deformation of undercooled austenite was investigated. It was found that as compared with Nb-free steel, the transformation incubation period of Nb-bearing steel was prolonged and the transformation kinetics curves parallelly moved to higher strain because of the solute Nb drag effect. Studies on kinetics also showed that the deformation-enhanced ferrite transformation (DEFT) of the two steels were composed of three stages, which can be expressed by the J-M-A equations individually. However, the parameter n related to the mode of nucleation and growth is somewhat different in the first and second stages of the two steels, and the same in the third stage for both the steels corresponding to the nucleation Of retained austenite. 展开更多
关键词 Nb-microalloyed steel deformation-enhanced ferrite transformation transformation kinetics J-m-A equations
下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部