期刊文献+
共找到42篇文章
< 1 2 3 >
每页显示 20 50 100
ELECTROMECHANICAL DEFORMATION AND FRACTURE OF PIEZOELECTRIC/FERROELECTRIC MATERIALS 被引量:1
1
作者 方岱宁 苏爱嘉 刘金喜 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2001年第3期193-213,共21页
This review presents the progress and current status of the investigation on electromechanical deformation and fracture of piezo electric/ferroelectric materials. An attempt is made to summarize a few fundamental aspe... This review presents the progress and current status of the investigation on electromechanical deformation and fracture of piezo electric/ferroelectric materials. An attempt is made to summarize a few fundamental aspects, which include electromechanical constitutive relations, piezoelectric micromechanics and electric fracture and fatigue, instead of describing all technological backgrounds, basic physics, experimental findings, and theoretical developments. A number of open questions and future prospective are presented. It is hoped that this review will encourage people to join the exploration of this important and interesting field. 展开更多
关键词 electromechanical deformation electric fracture and fatigue piezoelectric/ferroelectric materials
下载PDF
Electrocaloric effect in ferroelectric materials:From phase field to first-principles based effective Hamiltonian modeling 被引量:1
2
作者 Jingtong Zhang Xu Hou +2 位作者 Yajun Zhang Gang Tang Jie Wang 《Materials Reports(Energy)》 2021年第3期34-63,共30页
Electrocaloric effect(ECE)of ferroelectrics has attracted considerable interest due to its potential application in environmentally friendly solid-state refrigeration.The discovery of giant ECE in ferroelectric thin f... Electrocaloric effect(ECE)of ferroelectrics has attracted considerable interest due to its potential application in environmentally friendly solid-state refrigeration.The discovery of giant ECE in ferroelectric thin films has greatly renewed the research activities and significantly stimulated experimental and theoretical investigations.In this review,the recent progress on the theoretical modeling of ECE in ferroelectric and antiferroelectric materials are introduced,which mainly focuses on the phase field modeling and first-principles based effective Hamiltonian method.We firstly provide the theoretical foundation and technique details for each method.Then a comprehensive review on the progress in the application of two methods and the strategies to tune the ECE are presented.Finally,we outline the practical procedure on the development of multi-scale computational method without experiemtal parameters for the screening of optimized electrocaloric materials. 展开更多
关键词 Electrocaloric effect ferroelectric materials Phase field simulation Machine learning models First-principles based effective HAMILTONIAN MODELING
下载PDF
Preparation and Microstrutures of BSTO/MgO Ferroelectric Materials for Phase Shift
3
作者 杨春霞 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2007年第1期122-125,共4页
Barium strontium titanate/magnesia (BSTO/MgO) ferroelectric material for phase shift was prepared by traditional solid phase synthesis. The phase distribution, microstructure and electric properties were investigate... Barium strontium titanate/magnesia (BSTO/MgO) ferroelectric material for phase shift was prepared by traditional solid phase synthesis. The phase distribution, microstructure and electric properties were investigated. The results show that no secondary phase appears in the composites and the dimension of grains distributes uniformly. With 50 wt% MgO content, the dielectric tunability reaches 17.5 % in the external DC field of 4 000 Vomm^-1 and the microwave loss at about 2.5 GHz is 8×10^-3. Hence, it can be applied in tunable microwave phase shifters. 展开更多
关键词 barium strontium titanate/magnesia ferroelectric material phase shifter DIELECTRIC
下载PDF
Recent advances in memristors based on two-dimensional ferroelectric materials 被引量:2
4
作者 Wenbiao Niu Guanglong Ding +6 位作者 Ziqi Jia Xin-Qi Ma JiYu Zhao Kui Zhou Su-Ting Han Chi-Ching Kuo Ye Zhou 《Frontiers of physics》 SCIE CSCD 2024年第1期195-218,共24页
In this big data era, the explosive growth of information puts ultra-high demands on the data storage/computing, such as high computing power, low energy consumption, and excellent stability. However, facing this chal... In this big data era, the explosive growth of information puts ultra-high demands on the data storage/computing, such as high computing power, low energy consumption, and excellent stability. However, facing this challenge, the traditional von Neumann architecture-based computing system is out of its depth owing to the separated memory and data processing unit architecture. One of the most effective ways to solve this challenge is building brain inspired computing system with in-memory computing and parallel processing ability based on neuromorphic devices. Therefore, there is a research trend toward the memristors, that can be applied to build neuromorphic computing systems due to their large switching ratio, high storage density, low power consumption, and high stability. Two-dimensional (2D) ferroelectric materials, as novel types of functional materials, show great potential in the preparations of memristors because of the atomic scale thickness, high carrier mobility, mechanical flexibility, and thermal stability. 2D ferroelectric materials can realize resistive switching (RS) because of the presence of natural dipoles whose direction can be flipped with the change of the applied electric field thus producing different polarizations, therefore, making them powerful candidates for future data storage and computing. In this review article, we introduce the physical mechanisms, characterizations, and synthetic methods of 2D ferroelectric materials, and then summarize the applications of 2D ferroelectric materials in memristors for memory and synaptic devices. At last, we deliberate the advantages and future challenges of 2D ferroelectric materials in the application of memristors devices. 展开更多
关键词 two-dimensional ferroelectric materials synthesis strategies MEMRISTORS artificial synapses
原文传递
Ferroelectric materials for neuroinspired computing applications
5
作者 Dong Wang Shenglan Hao +2 位作者 Brahim Dkhil Bobo Tian Chungang Duan 《Fundamental Research》 CAS 2024年第5期1272-1291,共20页
In recent years,the emergence of numerous applications of artificial intelligence(AI)has sparked a new technological revolution.These applications include facial recognition,autonomous driving,intelligent robotics,and... In recent years,the emergence of numerous applications of artificial intelligence(AI)has sparked a new technological revolution.These applications include facial recognition,autonomous driving,intelligent robotics,and image restoration.However,the data processing and storage procedures in the conventional von Neumann architecture are discrete,which leads to the“memory wall”problem.As a result,such architecture is incompatible with AI requirements for efficient and sustainable processing.Exploring new computing architectures and material bases is therefore imperative.Inspired by neurobiological systems,in-memory and in-sensor computing techniques provide a new means of overcoming the limitations inherent in the von Neumann architecture.The basis of neural morphological computation is a crossbar array of high-density,high-efficiency non-volatile memory devices.Among the numerous candidate memory devices,ferroelectric memory devices with non-volatile polarization states,low power consumption and strong endurance are expected to be ideal candidates for neuromorphic computing.Further research on the complementary metal-oxide-semiconductor(CMOS)compatibility for these devices is underway and has yielded favorable results.Herein,we first introduce the development of ferroelectric materials as well as their mechanisms of polarization reversal and detail the applications of ferroelectric synaptic devices in artificial neural networks.Subsequently,we introduce the latest developments in ferroelectrics-based in-memory and in-sensor computing.Finally,we review recent works on hafnium-based ferroelectric memory devices with CMOS process compatibility and give a perspective for future developments. 展开更多
关键词 ferroelectric materials ferroelectric synaptic devices Artificial neural network In-memory computing In-sensor computing
原文传递
Enhancing BiVO_(4)photoanode performance by insertion of an epitaxial BiFeO_(3)ferroelectric layer
6
作者 Haejin Jang Yejoon Kim +6 位作者 Hojoong Choi Jiwoong Yang Yoonsung Jung Sungkyun Choi Donghyeon Lee Ho Won Jang Sanghan Lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期71-78,I0003,共9页
BiVO_(4)(BVO)is a promising material as the photoanode for use in photoelectrochemical applications.However,the high charge recombination and slow charge transfer of the BVO have been obstacles to achieving satisfacto... BiVO_(4)(BVO)is a promising material as the photoanode for use in photoelectrochemical applications.However,the high charge recombination and slow charge transfer of the BVO have been obstacles to achieving satisfactory photoelectrochemical performance.To address this,various modifications have been attempted,including the use of ferroelectric materials.Ferroelectric materials can form a permanent polarization within the layer,enhancing the separation and transport of photo-excited electron-hole pairs.In this study,we propose a novel approach by depositing an epitaxial BiFeO_(3)(BFO)thin film underneath the BVO thin film(BVO/BFO)to harness the ferroelectric property of BFO.The self-polarization of the inserted BFO thin film simultaneously functions as a buffer layer to enhance charge transport and a hole-blocking layer to reduce charge recombination.As a result,the BVO/BFO photoanodes showed more than 3.5 times higher photocurrent density(0.65 mA cm^(-2))at 1.23 V_(RHE)under the illumination compared to the bare BVO photoanodes(0.18 m A cm^(-2)),which is consistent with the increase of the applied bias photon-to-current conversion efficiencies(ABPE)and the result of electrochemical impedance spectroscopy(EIS)analysis.These results can be attributed to the self-polarization exhibited by the inserted BFO thin film,which promoted the charge separation and transfer efficiency of the BVO photoanodes. 展开更多
关键词 PHOTOELECTROCHEMICAL PHOTOANODE BiVO_(4) ferroelectric materials BiFeO_(3)
下载PDF
On the use of ferroelectric material LiNbO3 as novel photocatalyst in wastewater-fed microbial fuel cells 被引量:3
7
作者 N.Touach V.M.Ortiz-Martinez +5 位作者 M.J.Salar-Garcia A.Benzaouak F.Hernandez-Fernandez A.P.de Rios M.El Mahi E.M.Lotfi 《Particuology》 SCIE EI CAS CSCD 2017年第5期147-155,共9页
In this work, the use of lithium niobate (LiNbO3), a ferroelectric and photocatalyst material, is investi- gated as a new type of cathode catalyst for wastewater-fed single-chamber microbial fuel cells (MFCs). Car... In this work, the use of lithium niobate (LiNbO3), a ferroelectric and photocatalyst material, is investi- gated as a new type of cathode catalyst for wastewater-fed single-chamber microbial fuel cells (MFCs). Carbon cloth electrodes coated with LiNbO3 were studied with and without UV-vis irradiation to assess its photocatalytic behavior in these devices. The synthesized phase of LiNbO3 was characterized by X- ray diffraction, differential scanning calorimetry, particle size distribution, and transmission electron microscopy analyses. The MFC containing a LiNbO3-based cathode exhibited a maximum open circuit potential and power output of 400 mV and 131 mW/m^3, respectively, under irradiation. This cathode configuration also achieved the maximum chemical oxygen demand removal of 84% after 120 h of MFC operation. These results show that ferroelectric materials such as LiNbO3 could be used as cathode cat- alysts in MFC devices. As a complementary analysis, the removal of the heavy metals detected in the wastewater was also monitored. 展开更多
关键词 Lithium niobate ferroelectric material Photocatalyst Microbial fuel cell (MFC)Power outputWastewater treatment
原文传递
Ferroelectric materials for vibrational energy harvesting 被引量:2
8
作者 SONG JunDong WANG Jin 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2016年第7期1012-1022,共11页
Energy harvesting is an appealing technology that makes use of the ambient energy which is otherwise wasted. Piezoelectric materials directly convert the elastic energy to the electric energy, and thus have a great ad... Energy harvesting is an appealing technology that makes use of the ambient energy which is otherwise wasted. Piezoelectric materials directly convert the elastic energy to the electric energy, and thus have a great advantage in scavenging vibrational energy for simplicity in device structure with relatively high power density. This paper provides an overview on the research of piezoelectric materials in energy harvesting in recent decades, from basics of piezoelectricity and working principle of energy harvesting with piezoelectric materials, to the progress of development of high-performance piezoelectrics including ceramics, single crystals and polymers, then to experimental attempts on the device fabrication and optimization, finally to perspective applications of piezoelectric energy harvesting(PEH). The criteria for selection of materials for PEH applications are introduced. Not only the figure of merit but also maximum allowable stress of materials are taken into account in the evaluation of their potential in achieving high energy density and output power density. The influence of the device configuration on the performance is also acknowledged and discussed. The magnitude and distribution of induced stress in the piezoelectric unit upon excitation by the vibration source play an important role in determining the output power density and can be tuned via proper design of device configuration without changing its resonant frequency. Approaches to address the issue of frequency match accompanying with the resonant mode are illustrated with literature examples. Usage of PEH devices can be extended to a variety of vibration sources in everyday life as well as in nature. Some appealing applications of PEH, such as in implantable and wearable devices, are reviewed. 展开更多
关键词 energy harvesting ferroelectric materials piezoelectricity figure of merit applications
原文传递
Tensile stress regulated microstructures and ferroelectric properties of Hf_(0.5)Zr_(0.5)O_(2) films
9
作者 霍思颖 郑俊锋 +4 位作者 刘远洋 李育姗 陶瑞强 陆旭兵 刘俊明 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第12期61-66,共6页
The discovery of ferroelectricity in HfO_(2) based materials reactivated the research on ferroelectric memory.However,the complete mechanism underlying its ferroelectricity remains to be fully elucidated.In this study... The discovery of ferroelectricity in HfO_(2) based materials reactivated the research on ferroelectric memory.However,the complete mechanism underlying its ferroelectricity remains to be fully elucidated.In this study,we conducted a systematic study on the microstructures and ferroelectric properties of Hf_(0.5)Zr_(0.5)O_(2)(HZO)thin films with various annealing rates in the rapid thermal annealing.It was observed that the HZO thin films with higher annealing rates demonstrate smaller grain size,reduced surface roughness and a higher portion of orthorhombic phase.Moreover,these films exhibited enhanced polarization values and better fatigue cycles compared to those treated with lower annealing rates.The grazing incidence x-ray diffraction measurements revealed the existence of tension stress in the HZO thin films,which was weakened with decreasing annealing rate.Our findings revealed that this internal stress,along with the stress originating from the top/bottom electrode,plays a crucial role in modulating the microstructure and ferroelectric properties of the HZO thin films.By carefully controlling the annealing rate,we could effectively regulate the tension stress within HZO thin films,thus achieving precise control over their ferroelectric properties.This work established a valuable pathway for tailoring the performance of HZO thin films for various applications. 展开更多
关键词 HfO_(2) ferroelectric materials tension stress ANNEALING
下载PDF
Evaluation of the differential capacitance for ferroelectric materials using either charge-based or energy-based expressions
10
作者 C.M.Krowne 《Journal of Advanced Dielectrics》 CAS 2014年第3期44-53,共10页
Differential capacitance is derived based upon energy,charge or current considerations,and determined when it may go negative or positive.These alternative views of differential capacitances are analyzed,and the relat... Differential capacitance is derived based upon energy,charge or current considerations,and determined when it may go negative or positive.These alternative views of differential capacitances are analyzed,and the relationships between them are shown.Because of recent interest in obtaining negative capacitance for reducing the subthreshold voltage swing in field effect type of devices,using ferroelectric materials characterized by permittivity,these concepts are now of paramount interest to the research community.For completeness,differential capacitance is related to the static capacitance,and conditions when the differential capacitance may go negative in relation to the static capacitance are shown. 展开更多
关键词 Differential capacitance energy storage ferroelectric dielectric material negative capacitance subthreshold voltage swing reducing size of electronic devices microscopic electric polarization macroscopic permittivity
原文传递
Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-Ⅳmonochalcogenides MX(M=Sn,Ge;X=Se,Te,S)
11
作者 Maurice Franck Kenmogne Ndjoko 郭必诞 +1 位作者 彭银辉 赵宇军 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第3期396-401,共6页
Two-dimensional(2D)ferroelectric compounds are a special class of materials that meet the need for devices miniaturization,which can lead to a wide range of applications.Here,we investigate ferroelectric properties of... Two-dimensional(2D)ferroelectric compounds are a special class of materials that meet the need for devices miniaturization,which can lead to a wide range of applications.Here,we investigate ferroelectric properties of monolayer group-IV monochalcogenides MX(M=Sn,Ge;X=Se,Te,S)via strain engineering,and their effects with contaminated hydrogen are also discussed.GeSe,GeTe,and GeS do not go through transition up to the compressive strain of-5%,and consequently have good ferroelectric parameters for device applications that can be further improved by applying strain.According to the calculated ferroelectric properties and the band gaps of these materials,we find that their band gap can be adjusted by strain for excellent photovoltaic applications.In addition,we have determined the most stable hydrogen occupancy location in the monolayer SnS and SnTe.It reveals that H prefers to absorb on SnS and SnTe monolayers as molecules rather than atomic H.As a result,hydrogen molecules have little effect on the polarization and electronic structure of monolayer SnTe and SnS. 展开更多
关键词 two-dimensional material strain engineering ferroelectric photovoltaic materials hydrogen effect
下载PDF
Self-Adaptive and Electric Field-Driven Protective Layer with Anchored Lithium Deposition Enable Stable Lithium Metal Anode
12
作者 Ting Chen Luchao Yue +8 位作者 Guoqiang Shu Qing Yang Dong Wang Ruoyang Wang Xianyan Qiao Yan Sun Benhe Zhong Zhenguo Wu Xiaodong Guo 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期32-40,共9页
Lithium metal battery has great development potential because of its lowest electrochemical potential and highest theoretical capacity.However,the uneven deposition of Li^(+)flux in the process of deposition and strip... Lithium metal battery has great development potential because of its lowest electrochemical potential and highest theoretical capacity.However,the uneven deposition of Li^(+)flux in the process of deposition and stripping induces the vigorous growth of lithium dendrites,which results in severely battery performance degradation and serious safety hazards.Here,the tetragonal BaTiO3 polarized by high voltage corona was used to build an artificial protective layer with uniform positive polarization direction,which enables uniform Li^(+)flux.In contrast to traditional strategies of using protective layer,which can guide the uniform deposition of lithium metal.The ferroelectric protective layer can accurately anchor the Li^(+)and achieve bottom deposition of lithium due to the automatic adjustment of the electric field.Simultaneously,the huge volume changes caused by Li^(+)migration change of the lithium metal anode during charging and discharging is functioned to excite the piezoelectric effect of the protective layer,and achieve seamless dynamic tuning of lithium deposition/stripping.This dynamic effect can accurately anchor and capture Li^(+).Finally,the layer-modified Li anode enables reversible Li plating/stripping over 1500 h at 1 mA cm^(-2)and 50℃in symmetric cells.In addition,the assembled Li-S full cell exhibits over 300 cycles with N/P≈1.35.This work provides a new perspective on the uniform Li^(+)flux at the Li-anode interface of the artificial protective layer. 展开更多
关键词 dense plating/stripping process electric field ferroelectric materials lithium metal batteries solid electrolyte interphase
下载PDF
Analysis of the electromechanical behavior of ferroelectric ceramics based on a nonlinear finite element model 被引量:3
13
作者 Daining Fang Faxin Li +1 位作者 A. K. Soh Tieqi Liu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2005年第3期294-304,共11页
A nonlinear finite element (FE) model based on domain switching was proposed to study the electromechanical behavior of ferroelectric ceramics. The incremental FE formulation was improved to avoid any calculation in... A nonlinear finite element (FE) model based on domain switching was proposed to study the electromechanical behavior of ferroelectric ceramics. The incremental FE formulation was improved to avoid any calculation instability. The problems of mesh sensitivity and convergence, and the efficiency of the proposed nonlinear FE technique have been assessed to illustrate the versatility and potential accuracy of the said technique. The nonlinear electromechanical behavior, such as the hysteresis loops and butterfly curves, of ferroelectric ceramics subjected to both a uniform electric field and a point electric potential has been studied numerically. The results obtained are in good agreement with those of the corresponding theoretical and experimental analyses. Furthermore, the electromechanical coupling fields near (a) the boundary of a circular hole, (b) the boundary of an elliptic hole and (c) the tip of a crack, have been analyzed using the proposed nonlinear finite element method (FEM). The proposed nonlinear electromechanically coupled FEM is useful for the analysis of domain switching, deformation and fracture of ferroelectric ceramics. 展开更多
关键词 ferroelectric material Domain switching Finite element method Nonlinear electromechanical coupling Crack and fracture
下载PDF
Intrinsic photocatalytic water oxidation activity of Mn-doped ferroelectric BiFeO3 被引量:2
14
作者 Jafar Hussain Shah Anum Shahid Malik +3 位作者 Ahmed Mahmoud Idris Saadia Rasheed Hongxian Han Can Li 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第6期945-952,共8页
The development of stable and efficient visible light-absorbing oxide-based semiconductor photocatalysts is a desirable task for solar water splitting applications.Recently,we proposed that the low photocurrent densit... The development of stable and efficient visible light-absorbing oxide-based semiconductor photocatalysts is a desirable task for solar water splitting applications.Recently,we proposed that the low photocurrent density in film-based BiFeO_(3)(BFO)is due to charge recombination at the interface of the domain walls,which could be largely reduced in particulate photocatalyst systems.To demonstrate this hypothesis,in this work we synthesized particulate BFO and Mn-doped BiFeO_(3)(Mn-BFO)by the sol-gel method.Photocatalytic water oxidation tests showed that pure BFO had an intrinsic photocatalytic oxygen evolution reaction(OER)activity of 70μmol h^(-1) g^(-1),while BFO-2,with an optimum amount of Mn doping(0.05%),showed an OER activity of 255μmol h^(-1) g^(-1) under visible light(λ≥420 nm)irradiation.The bandgap of Mn-doped BFO could be reduced from 2.1 to 1.36 eV by varying the amount of Mn doping.Density functional theory(DFT)calculations suggested that surface Fe(rather than Mn)species serve as the active sites for water oxidation,because the overpotential for water oxidation on Fe species after Mn doping is 0.51 V,which is the lowest value measured for the different Fe and Mn species examined in this study.The improved photocatalytic water oxidation activity of Mn-BFO is ascribed to the synergistic effect of the bandgap narrowing,which increases the absorption of visible light,reduces the activation energy of water oxidation,and inhibits the recombination of photogenerated charges.This work demonstrates that Mn doping is an effective strategy to enhance the intrinsic photocatalytic water oxidation activity of particulate ferroelectric BFO photocatalysts. 展开更多
关键词 Photocatalytic water oxidation Bandgap engineering Bismuth ferrite ferroelectric materials Cation doping
下载PDF
Ferroelectric Properties and Applications of Hybrid Organic-Inorganic Perovskites 被引量:1
15
作者 Xin Tong Zhiming M. Wang 《Journal of Electronic Science and Technology》 CAS CSCD 2017年第4期326-332,共7页
Hybrid organic-inorganic perovskites (e.g. CH;NH;PbI;) have attracted tremendous attention due to their promise for achieving next-generation cost-effective and high performance optoelectronic devices.These hybrid o... Hybrid organic-inorganic perovskites (e.g. CH;NH;PbI;) have attracted tremendous attention due to their promise for achieving next-generation cost-effective and high performance optoelectronic devices.These hybrid organic-inorganic perovskites possess excellent optical and electronic properties, including strong light absorption, high carrier abilities, optimized charge diffusion lengths, and reduced charge recombination etc., leading to their widespread applications in advanced solar energy technologies (e.g.high efficiency perovskite solar cells). However, there is still a lack of investigations regarding fundamental properties such as ferroelectricity in these perovskites.As conventional ferroelectric ceramics are prepared at high temperature and have no mechanically flexibility,low-temperature proceed and flexible perovskite ferroelectrics have become promising candidates and should be exploited for future flexible ferroelectric applications. Here, ferroelectric properties in hybrid organic-inorganic perovskites and several state-of-the-art perovskite ferroelectrics are reviewed. Novel ferroelectric applications of hybrid organic-inorganic perovskites are discussed as well, providing guideline for realizing future high performance and flexible ferroelectric devices. 展开更多
关键词 ferroelectricITY ferroelectric materials flexible devices organic-inorganic perovskites
下载PDF
Ferroelectric solid solution Li1-xTa1-xWxO3 as potential photocatalysts in microbial fuel cells:Effect of the W content
16
作者 Abdellah Benzaouak Nour-Eddine Touach +5 位作者 V.M.Ortiz-Martinez M.J.Salar-Garcia F.Hernandez-Fernandez A.P.de los Rios Mohammed El Mahi El Mostapha Lotfi 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第9期1985-1991,共7页
Microbial fuel cells(MFCs)are bio-electrochemical systems that can directly convert the chemical energy contained in an effluent into bioelectricity by the action of microorganisms.The performance of these devices is ... Microbial fuel cells(MFCs)are bio-electrochemical systems that can directly convert the chemical energy contained in an effluent into bioelectricity by the action of microorganisms.The performance of these devices is heavily impacted by the choice of the material that forms the cathode.This work focuses on the assessment of ferroelectric and photocatalytic materials as a new class of non-precious catalysts for MFC cathode construction.A series of cathodes based on mixed oxide solid solution of LiTaO_3with WO_3formulated as Li_(1-x)Ta_(1-x)W_xO_3(x=0,0.10,0.20 and0.25),were prepared and investigated in MFCs.The catalyst phases were synthesized,identified and characterized by DRX,PSD,MET and UV–Vis absorption spectroscopy.The cathodes were tested as photoelectrocatalysts in the presence and in the absence of visible light in devices fed with industrial wastewater.The results revealed that the catalytic activity of the cathodes strongly depends on the ratio of substitution of W^(6+)in the LiTaO_3matrix.The maximum power densities generated by the MFC working with this series of cathodes increased from60.45 mW·m^(-3)for x=0.00(LiTaO_3)to 107.2 mW·m^(-3)for x=0.10,showing that insertion of W^(6+)in the tantalate matrix can improve the photocatalytic activity of this material.Moreover,MFCs operating under optimal conditions were capable of reducing the load of chemical oxygen demand by 79%(COD_(initial)=1030 mg·L^(-1)). 展开更多
关键词 ferroelectric materials TANTALATE PHOTOCATHODE Microbial fuel cell BIOENERGY Wastewater treatment
下载PDF
Impedance and ferroelectric properties of Sr^(2+) modified PZT-PMN ceramics
17
作者 Arvind Kumar S.K.Mishra 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第6期595-603,共9页
Sr^2+ modified polycrystalline PZT-PMN ceramics were synthesized by a semi-wet route. Impedance spectroscopy studies indicate the bulk and grain boundary effects of PZT-PMN material along with the negative temperatur... Sr^2+ modified polycrystalline PZT-PMN ceramics were synthesized by a semi-wet route. Impedance spectroscopy studies indicate the bulk and grain boundary effects of PZT-PMN material along with the negative temperature coefficient of resistance. The bulk conductiv-ity exhibits an Arrhenius-type thermally activated hopping process which is supported by the AC conductivity behavior as a function of fre-quency and temperature. It is observed that the remnant polarization increases with an increase in the Sr2+content in PZT-PMN. 展开更多
关键词 piezoelectric ceramics ferroelectric materials ferroelectricITY electrochemical properties STRONTIUM
下载PDF
High-performance ferroelectric based materials via high-entropy strategy:Design,properties,and mechanism 被引量:2
18
作者 Yueyun Zhang Liang Chen +3 位作者 Hui Liu Shiqing Deng He Qi Jun Chen 《InfoMat》 SCIE CSCD 2023年第12期28-53,共26页
High-performance ferroelectric materials are widely used in various electronic devices owing to the function of mutual conversion among different energies,which mainly relates to their special structure gene of polari... High-performance ferroelectric materials are widely used in various electronic devices owing to the function of mutual conversion among different energies,which mainly relates to their special structure gene of polarization configuration.Recent researches show that the high-entropy strategy has emerged as an effective and flexible approach for boosting physical properties in high-entropy ferroelectrics via the delicate design of local polarization configurations and other intrinsic effects caused by entropy increment,such as entropy stabilization,lattice disorder,inhibition of grain coarsening,improved mechanical properties,cocktail effect,and so on.In this review,the recent research progress about high-entropy ferroelectrics has been summarized,especially for the directional design of novel local polarization configurations according to the characteristics of different electrical properties such as high piezoelectricity,high-efficiency energy storage,and large electrostriction,providing a guidance for designing and exploring more novel local polarization configurations in high-entropy ferroelectrics for generating higher performance. 展开更多
关键词 ferroelectric materials high performance high-entropy design local structure polarization configuration
原文传递
Research progress on 2D ferroelectric and ferrovalley materials and their neuromorphic application 被引量:1
19
作者 Yifan Tan Junding Zheng +4 位作者 Xuezhong Niu Yifeng Zhao Ni Zhong Bobo Tian Chungang Duan 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2023年第11期55-76,共22页
Two-dimensional(2D)ferroelectric and ferrovalley materials have recently received extensive attention due to their significant advantages for modern electronic devices,such as miniaturization,low-dissipation,non-volat... Two-dimensional(2D)ferroelectric and ferrovalley materials have recently received extensive attention due to their significant advantages for modern electronic devices,such as miniaturization,low-dissipation,non-volatility,and multi-functionality.More interestingly,the couplings between the ferroic orders in these materials have enriched the development of intelligent devices,especially in neuromorphic computing.In this paper,the research progress of 2D ferroelectric and ferrovalley materials is introduced and the coupling effects between them are also described.Then,we briefly introduce recent neuromorphic computing reports based on 2D ferroelectric materials and give perspectives on ferrovalley neuromorphic devices. 展开更多
关键词 two-dimensional materials ferroelectric materials multiferroic coupling neuromorphic application
原文传递
Visualizing interface states in In_(2)Se_(3)–WSe_(2)monolayer lateral heterostructures
20
作者 霍达 白玉松 +5 位作者 林笑宇 邓京昊 潘泽敏 朱超 刘传胜 张晨栋 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第5期141-145,共5页
Recent findings of two-dimensional(2D)ferroelectric(FE)materials provide more possibilities for the development of 2D FE heterostructure electronic devices based on van der Waals materials and the application of FE de... Recent findings of two-dimensional(2D)ferroelectric(FE)materials provide more possibilities for the development of 2D FE heterostructure electronic devices based on van der Waals materials and the application of FE devices under the limit of atomic layer thickness.In this paper,we report the in-situ fabrication and probing of electronic structures of In_(2)Se_(3)–WSe_(2) lateral heterostructures,compared with most vertical FE heterostructures at present.Through molecular beam epitaxy,we fabricated lateral heterostructures with monolayer WSe_2(three atomic layers)and monolayer In_(2)Se_(3)(five atomic layers).Type-Ⅱband alignment was found to exist in either the lateral heterostructure composed of anti-FEβ′-In_(2)Se_(3) and WSe_(2) or the lateral heterostructure composed of FEβ*-In_(2)Se_(3)and WSe_2,and the band offsets could be modulated by ferroelectric polarization.More interestingly,interface states in both lateral heterostructures acted as narrow gap quantum wires,and the band gap of the interface state in theβ*-In_(2)Se_(3)–WSe_(2)heterostructure was smaller than that in theβ′-In_(2)Se_(3)heterostructure.The fabrication of 2D FE heterostructure and the modulation of interface state provide a new platform for the development of FE devices. 展开更多
关键词 two-dimensional ferroelectric materials scanning tunneling microscope lateral heterostructure band alignment
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部