Novel coal gangue-based persulfate catalyst(CG-FeCl_(2))was successfully synthesized by the means of calcinating under nitrogen atmosphere with the addition of ferrous chloride tetrahydrate(FeCl_(2)·_(4)H_(2)O).T...Novel coal gangue-based persulfate catalyst(CG-FeCl_(2))was successfully synthesized by the means of calcinating under nitrogen atmosphere with the addition of ferrous chloride tetrahydrate(FeCl_(2)·_(4)H_(2)O).The phase transformation of the prepared materials and gas products during the heating process are thoroughly investigated.It is suggested that ferrous chloride participated in the phase transformation and formed Si-O-Fe bonds.And the main gaseous products are H_(2)O,H_(2),and HCl during the heating process.Besides,the ability of CG-FeCl_(2) to activate peroxymonosulfate(PMS)for catalytic degradation of polycyclic aromatic hydrocarbons(PAHs)and phenol was deeply studied.More than 95%of naphthyl,phenanthrene and phenol were removed under optimizied conditions.In addition,1O_(2),·OH,and SO_(4)·−were involved in the CG-FeCl_(2)/PMS system from the free radical scavenging experiment,where 1O_(2) played a major role during the oxidation process.Furthermore,CG-FeCl_(2)/PMS system exhibited superior stability in a relatively wide pH range and the presence of common anion from related degradation experiments.Overall,the novel CG-FeCl_(2) is an efficient and environmentally friendly catalyst,displaying potential application prospect in the field of PAHs and phenol-contaminated wastewater treatment.展开更多
In order to develop a low-cost approach for separating macro amounts of Mo and W, the effects of parameters on the separation using FeSO4 as precipitation reagent were studied. The results show that the optimum reacti...In order to develop a low-cost approach for separating macro amounts of Mo and W, the effects of parameters on the separation using FeSO4 as precipitation reagent were studied. The results show that the optimum reaction temperature is 10 °C, and the separation factor does not further improve after a reaction time of 7 h. Moreover, slow dropping speed of the precipitation reagent is beneficial for improving the separation efficiency. When the H+/W molar ratio is below 1/1, the addition of acid to a neutral solution is favorable to the separation. For the solution with an ammonium concentration below 3 mol/L, the separation factor is high due to the high W-precipitation rate. Furthermore, the method is also effective when it is applied to industrial solution containing some other impurities. All these indicate the ferrous salts have great potential for removing W from Mo on a commercial scale.展开更多
Polyethylene (PE) films with additives consisting mainly of oleic acid and ferrous ions were subjected to accelerated degradation at simulated composting temperatures.Based on Fourier transform infrared spectroscopy a...Polyethylene (PE) films with additives consisting mainly of oleic acid and ferrous ions were subjected to accelerated degradation at simulated composting temperatures.Based on Fourier transform infrared spectroscopy and measurements of mechanical properties and viscosity average molecular weight,the degradation of the films was characterized and the degradation mechanism was discussed.The films containing additives with ferrous ions represent considerable decreases in molecular weight,and the carbonyl groups and hydroperoxides in the aging films show different trends of increase with the aging time.These results indicate that the ferrous ion plays an important role in the degradation of PE films and accelerates the degradation of PE.展开更多
Magnetite concentrate was recovered from ferrous sulphate by co-precipitation and magnetic separation. In co-precipitation process, the effects of reaction conditions on iron recovery were studied, and the optimal rea...Magnetite concentrate was recovered from ferrous sulphate by co-precipitation and magnetic separation. In co-precipitation process, the effects of reaction conditions on iron recovery were studied, and the optimal reaction parameters are proposed as follows: n(CaO)/n(Fe2+) 1.4:1, reaction temperature 80 ℃, ferrous ion concentration 0.4 mol/L, and the final mole ratio of Fe3+ to FJ+ in the reaction solution 1.9-2.1. In magnetic separation process, the effects of milling time and magnetic induction intensity on iron recovery were investigated. Wet milling played an important part in breaking the encapsulated magnetic phases. The results showed that the mixed product was wet-milled for 20 min before magnetic separation, the grade and recovery rate of iron in magnetite concentrate were increased from 51.41% and 84.15% to 62.05% and 85.35%, respectively.展开更多
A great amount of ferrous tailings and slag cause severe damage to the ecological environment, which must be reclaimed and utilized. The composition, type, and characteristics of ferrous tailings and slag in China wer...A great amount of ferrous tailings and slag cause severe damage to the ecological environment, which must be reclaimed and utilized. The composition, type, and characteristics of ferrous tailings and slag in China were introduced. The research status and the application outlook of glass ceramics made from ferrous tailings and slag were discussed. Glass ceramics made from ferrous tailings and slag can be applied to various fields, and it will be environmentally conscious materials in the 21st century.展开更多
To study the effects of selenium on root oxidizing ability and yield of rice under ferrous stress, a pot culture experiment was conducted, the activity of glutathione peroxidase (GSH-Px) and the concentration of malon...To study the effects of selenium on root oxidizing ability and yield of rice under ferrous stress, a pot culture experiment was conducted, the activity of glutathione peroxidase (GSH-Px) and the concentration of malonaldelyde (MDA) were determined. The root oxidizing ability and yield characters of rice were examined. Results showed that appropriate amount of Se enhanced the activity of glutathione peroxidase and the oxidizing ability of rice roots significantly, reduced the concentration of MDA, increased 1000-grain weight of rice, F = 26.96**, decreased empty and blighted grain rate, increased the rice yield, F = 11.53**, and enhanced the rice resistance under ferrous stress.展开更多
The effect of hydraulic retention time (HRT) and pH on the biooxidation of ferrous iron during simulated acid mine drainage (AMD) treatment was investigated.The simulated AMD was highly acidic (pH 2.5), rich in iron (...The effect of hydraulic retention time (HRT) and pH on the biooxidation of ferrous iron during simulated acid mine drainage (AMD) treatment was investigated.The simulated AMD was highly acidic (pH 2.5), rich in iron (about 1700 mg/L) and copper (about 200 mg/L), and contained high concentrations of sulfate (about 4700 mg/L).The biooxidation of ferrous iron was studied in a laboratory-scale upflow packed bed bioreactor (PBR).The HRT was shortened stepwise from 40 h to 20 h, 13 h, and 8 h under the acidic environment at a pH value of 2.2.Then, the influent pH value was changed from 2.2 to 1.2 at a constant suitable HRT.Physiochemical and microbial community structure analyses were performed on water samples and stuffing collected from the bioreactor under different conditions.The results indicate that the efficiency of ferrous iron oxidation gradually decreased with the decrease of HRT, and when the HRT exceeded 13 h, ferrous iron in AMD was almost completely oxidized.In addition, the best efficiency of ferrous iron oxidation was achieved at the influent pH value of 1.8.Microbial community structure analyses show that Leptospirillum is the predominant genus attached in the bioreactor, and low influent pH values are suitable for the growth of Leptospirillum.展开更多
The transformation behavior of ferrous sulfate was examined during hematite precipitation for iron removal in hydrometallurgical zinc.Specifically,the effects of the method used for oxygen supply(pre-crystallization o...The transformation behavior of ferrous sulfate was examined during hematite precipitation for iron removal in hydrometallurgical zinc.Specifically,the effects of the method used for oxygen supply(pre-crystallization or pre-oxidation of ferrous sulfate)and temperature(170–190℃)on the redissolution and oxidation–hydrolysis of ferrous sulfate were studied.The precipitation characteristics and phase characterization of the hematite product were investigated.The results showed that the solubility of ferrous sulfate was considerably lower at elevated temperatures.The dissolution behavior of ferrous sulfate crystals was influenced by both the concentrations of free acid and zinc sulfate and the oxydrolysis of ferrous ions.Rapid oxydrolysis of ferrous ions may serve as the dissolution driving force.Hematite precipitation proceeded via the following sequential steps:crystallization,redissolution,oxidation,and precipitation of ferrous sulfate.The dissolution of ferrous sulfate was slow,which helped to maintain a low supersaturation environment,thereby affording the production of high-grade hematite.展开更多
In the interest of accelerating aniline degradation, Fe2+ and chelated Fe2+ activated persulfate oxidations were investigated in neutral pH condition. Three kinds of chelating agents were selected including citric aci...In the interest of accelerating aniline degradation, Fe2+ and chelated Fe2+ activated persulfate oxidations were investigated in neutral pH condition. Three kinds of chelating agents were selected including citric acid, oxalic acid and ethylenediamine tetraaceatate(EDTA) to maintain available Fe2+. The results indicate that the concentration of chelating agent and ferrous ion didn't follow a linear relationship with the degradation rate of aniline. A 1/1 ratio of chelating agent/Fe2+ results in a higher degradation rate compared to the results by other ratios. The oxidation enhancement factor using oxalic acid was found to be relatively low. In contrast, citric acid is more suitable chelating agent in the ferrous iron activated persulfate system and aniline exhibits a highest degradation with a persulfate/Fe2+/citric acid/aniline molar ratio of 50/25/25/1 compared to other molar ratios.展开更多
Diamond tools play a critical role in ultra-precision machining due to their excellent physical and mechanical material properties,such as that cutting edge can be sharpened to nanoscale accuracy.However,abrasive chem...Diamond tools play a critical role in ultra-precision machining due to their excellent physical and mechanical material properties,such as that cutting edge can be sharpened to nanoscale accuracy.However,abrasive chemical reactions between diamond and non-diamond-machinable metal elements,including Fe,Cr,Ti,Ni,etc,can cause excessive tool wear in diamond cutting of such metals and most of their alloys.This paper reviews the latest achievements in the chemical wear and wear suppression methods for diamond tools in cutting of ferrous metals.The focus will be on the wear mechanism of diamond tools,and the typical wear reduction methods for diamond cutting of ferrous metals,including ultrasonic vibration cutting,cryogenic cutting,surface nitridation and plasma assisted cutting,etc.Relevant commercially available devices are introduced as well.Furthermore,future research trends in diamond tool wear suppression are discussed and examined.展开更多
The effect of PEG dispersant on the magnetic separation of magnetite(Fe3O4) synthesized from ferrous sulfate solution via co-precipitation method with calcium hydroxide as the precipitant was investigated. The resul...The effect of PEG dispersant on the magnetic separation of magnetite(Fe3O4) synthesized from ferrous sulfate solution via co-precipitation method with calcium hydroxide as the precipitant was investigated. The results indicated that a PEG dispersant could significantly affect Fe3O4 recovery. Adding PEG during the preparation of Fe3O4 was unfavorable for Fe3O4 recovery. When the PEG-6000 concentration was increased from 0 to 8 g/L, the iron grade and median particle size of the Fe3O4 product decreased from 65.58% and 2.35 μm to 57.79% and 1.35 μm, respectively. However, adding PEG during the wet milling of the mixed product promoted the subsequent recovery of Fe3O4. When the amount of PEG-200 increased from 0% to 4% of the powder mass, the grade of iron in the Fe3O4 product increased from 65.58% to 68.32%. While the relative molecular mass of PEG at an amount of 4% of the powder mass increased from 200 to 20000, the grade of iron was reduced from 68.32% to 66.70%.展开更多
Reduction rate of ferrous oxide in smelting reduction with iron bath has been studied. The main affecting factors on reduction rate, such as composition of the melt, temperature of molten bath, basicity of slag...Reduction rate of ferrous oxide in smelting reduction with iron bath has been studied. The main affecting factors on reduction rate, such as composition of the melt, temperature of molten bath, basicity of slag and the way of supplying carbonaceous materials have also been investigated.展开更多
We numerically simulated and experimentally studied the interfacialcarbon diffusion between diamond tooland workpiece materials.A diffusion modelwith respect to carbon atoms of diamond toolpenetrating into chips and m...We numerically simulated and experimentally studied the interfacialcarbon diffusion between diamond tooland workpiece materials.A diffusion modelwith respect to carbon atoms of diamond toolpenetrating into chips and machined surface was established.The numericalsimulation results of the diffusion process revealthat the distribution laws of carbon atoms concentration have a close relationship with the diffusion distance,the diffusion time,and the originalcarbon concentration of the work material.In addition,diamond face cutting tests of die steels with different carbon content are conducted at different depth of cuts and feed rates to verify the previous simulation results.The micro-morphology of the chips is detected by scanning electron microscopy.Energy dispersive X-ray analysis was proposed to investigate the change in carbon content of the chips surface.The experimentalresults of this work are of benefit to a better understanding on the diffusion wear mechanism in single crystaldiamond cutting of ferrous metals.Moreover,the experimentalresults show that the diffusion wear of diamond could be reduced markedly by applying ultrasonic vibration to the cutting toolcompared with conventionalturning.展开更多
The preparation of microsized hematite powder from ferrous sulfate using microwave calcination was investigated based on the TG/DTG curves. The decomposition of industrial ferrous sulfate under air atmosphere was divi...The preparation of microsized hematite powder from ferrous sulfate using microwave calcination was investigated based on the TG/DTG curves. The decomposition of industrial ferrous sulfate under air atmosphere was divided into three stages, and a ferrous sulfate sample added with 15% Fe_2O_3 could strongly absorb microwave energy. Therefore, preparing hematite powder from ferrous sulfate using microwave calcination was feasible. Hematite was obtained under the following optimized conditions: calcination temperature, 850 °C; microwave power, 650 W; and sample amount, 40 g. The obtained hematite satisfied the first-grade quality requirements. The total ferrum value was more than 58%, and the total sulfur and phosphorus contents were less than 0.5% and 0.2%, respectively. X-ray powder diffraction and scanning electron microscopy were used to characterize the structure and morphology of microsized hematite powder. The particles were non-spherical in shape, and the average particle size distribution was 10.45 μm. This work provides new potential applications for waste ferrous sulfate.展开更多
Objective: To compare the efficacy and compliance of the conventional therapy of iron deficiency anemia (ferrous sulfate) with the new forms of therapy chewable iron tablets: (iron polymaltose complex) in the treatmen...Objective: To compare the efficacy and compliance of the conventional therapy of iron deficiency anemia (ferrous sulfate) with the new forms of therapy chewable iron tablets: (iron polymaltose complex) in the treatment of iron deficiency anemia in pregnant women. Methods: This Randomized Control Trial study included 290 pregnant women with iron deficiency anemia, and they were randomly allocated to a control group who received ferrous sulfate capsules for two months and study group who received iron polymaltose complex chewable tablets for two months. Complete Blood Picture (hemoglobin level and hematocrit level) and Serum ferritin level were done after four and eight weeks to determine the efficacy. In addition, any complains or side effects had been reported to assess the tolerability of the drugs. Two-factor repeated-measures analysis of variance (ANOVA) was used to compare the change in hemoglobin and serum ferritin levels in both groups. Results: There was no statistical significant difference between the two research groups as regards baseline hemoglobin, and at week 4 from onset of treatment (p values = 0.990, 0.112, consecutively). However, there was statistical significant difference on week 8 of continuous drug intake in both groups in which the iron poly maltose complex research group had significantly higher hemoglobin levels (p value = 0.006). Conclusion: The results of the study showed oral iron polymaltose complex increases Hemoglobin and serum ferritin levels more than oral ferrous sulfate and produces less adverse effects than ferrous sulfate.展开更多
The reduction of less stable ferric hydroxides and formation of ferrous phases is critical for the fate of phosphorus in anaerobic soils and sediments. The interaction between ferrous iron and phosphate was investigat...The reduction of less stable ferric hydroxides and formation of ferrous phases is critical for the fate of phosphorus in anaerobic soils and sediments. The interaction between ferrous iron and phosphate was investigated experimentally during the reduction of synthetic ferrihydrite with natural organic materials as carbon source. Ferrihydrite was readily reduced by dissimilatory iron reducing bacteria (DIRB) with between 52% and 73% Fe(III) converted to Fe(II) after 31 days, higher than without DIRB. Formation of ferrous phases was linearly coupled to almost complete removal of both aqueous and exchangeable phosphate. Simple model calculations based on the incubation data suggested ferrous phases bound phosphate with a molar ratio of Fe(II):P between 1.14 - 2.25 or a capacity of 246 - 485 mg·P·g-1 Fe(II). XRD analysis indicated that the ratio of Fe(II): P was responsible for the precipitation of vivianite (Fe3(PO4)2·8H2O), a dominant Fe(II) phosphate mineral in incubation systems. When the ratio of Fe(II):P was more than 1.5, the precipitation of Fe(II) phosphate was soundly crystallized to vivianite. Thus, reduction of ferric iron provides a mechanism for the further removal of available phosphate via the production of ferrous phases, with anaerobic soils and sediments potentially exhibiting a higher capacity to bind phosphate than some aerobic systems.展开更多
The present study was conducted to elucidate the influence of impurities in waste ferrous sulfate on its recovery of magnetite. Ferrous sulfate solution was purified by the addition of Na OH solution to precipitate im...The present study was conducted to elucidate the influence of impurities in waste ferrous sulfate on its recovery of magnetite. Ferrous sulfate solution was purified by the addition of Na OH solution to precipitate impurities, and magnetite was recovered from ferrous sulfate solution without and with purification pretreatment. Calcium hydroxide was added to the solution of ferrous sulfate as a precipitator. A mixed product of magnetite and gypsum was subsequently obtained by air oxidation and heating. Wet-milling was performed prior to magnetic separation to recover magnetite from the mixed products. The results show that with the purification pretreatment, the grade of iron in magnetite concentrate increased from 62.05% to 65.58% and the recovery rate of iron decreased from 85.35% to 80.35%. The purification pretreatment reduced the conglutination between magnetite and gypsum, which favors their subsequent magnetic separation. In summary, a higher-grade magnetite with a better crystallinity and a larger particle size of 2.35 μm was obtained with the purification pretreatment.展开更多
This paper discusses the toxicity and mobility of chromium species. And it presents the extent and kinetics of reductive remediation of hexavalent chromium, Cr+ using ferrous ion, Fe2+. Molar ratios of 1:3 and 1:6 of ...This paper discusses the toxicity and mobility of chromium species. And it presents the extent and kinetics of reductive remediation of hexavalent chromium, Cr+ using ferrous ion, Fe2+. Molar ratios of 1:3 and 1:6 of Cr (VI) to Fe (II) were used. Integral method of data analysis showed reaction followed second-order kinetics with R square values near unity. Reaction was initially fast but with a rapid precipitation attributed to Cr (III)-Fe (III) in previous studies. This colloidal precipitate ultimately stops the reaction, which explains while conversion efficiency increases with increased molar ratio of Cr (VI) to Fe (II). The impact of pH was investigated by adjusting the Cr (VI)-Fe (II) medium to pH 2.78, 5.24, 7.00, 9.00 and 11.96 using predetermined drops of acid or base. Reaction was more rapid under alkaline conditions with higher extent of degradation consistent with previous research. In soil system, mass transfer limitation was hardly noticed as high extent of reduction was recorded relative to aqueous phase. The high solubility of Cr (VI) aided the release into the aqueous media for reduction by ferrous sulfate.展开更多
In this paper, Fenton process was determined to be an effective technique to treat the refractory Nonylphenol ethoxylates (NPEOs) wastewater. The COD removal efficien-cies above 89% were obtained when the initial COD ...In this paper, Fenton process was determined to be an effective technique to treat the refractory Nonylphenol ethoxylates (NPEOs) wastewater. The COD removal efficien-cies above 89% were obtained when the initial COD concentration was 12000mg/L. However, A large number of ferric sludge (SS=8.724g/L) would be produced after the Fenton oxidation of the wastewater and must be disposed appropriately. A novel process for Fenton sludge reused by low-cost ferrous sulfide (FeS) was also investi-gated. Experimental results show that the Fenton sludge could be reduced to produce a certain amount of Fe2+ in the acidic mixed liquor by ferrous sulfide. This mixed liquor from Fenton sludge could be used as the new catalyst in the Fenton process and was also highly effective for the NPEOs wastewater treatment. The residual ferrous sulfide from the mixed liquor could be used for the next batch of the展开更多
基金National Key R&D Program of China(2019YFC1904903 and 2020YFC1806504)China Postdoctoral Science Foundation(2020M680757)Fundamental Research Funds for the Central Universities(2022XJHH08).
文摘Novel coal gangue-based persulfate catalyst(CG-FeCl_(2))was successfully synthesized by the means of calcinating under nitrogen atmosphere with the addition of ferrous chloride tetrahydrate(FeCl_(2)·_(4)H_(2)O).The phase transformation of the prepared materials and gas products during the heating process are thoroughly investigated.It is suggested that ferrous chloride participated in the phase transformation and formed Si-O-Fe bonds.And the main gaseous products are H_(2)O,H_(2),and HCl during the heating process.Besides,the ability of CG-FeCl_(2) to activate peroxymonosulfate(PMS)for catalytic degradation of polycyclic aromatic hydrocarbons(PAHs)and phenol was deeply studied.More than 95%of naphthyl,phenanthrene and phenol were removed under optimizied conditions.In addition,1O_(2),·OH,and SO_(4)·−were involved in the CG-FeCl_(2)/PMS system from the free radical scavenging experiment,where 1O_(2) played a major role during the oxidation process.Furthermore,CG-FeCl_(2)/PMS system exhibited superior stability in a relatively wide pH range and the presence of common anion from related degradation experiments.Overall,the novel CG-FeCl_(2) is an efficient and environmentally friendly catalyst,displaying potential application prospect in the field of PAHs and phenol-contaminated wastewater treatment.
基金Project (2007AA06Z129) supported by the National High-tech Research and Development Program of China
文摘In order to develop a low-cost approach for separating macro amounts of Mo and W, the effects of parameters on the separation using FeSO4 as precipitation reagent were studied. The results show that the optimum reaction temperature is 10 °C, and the separation factor does not further improve after a reaction time of 7 h. Moreover, slow dropping speed of the precipitation reagent is beneficial for improving the separation efficiency. When the H+/W molar ratio is below 1/1, the addition of acid to a neutral solution is favorable to the separation. For the solution with an ammonium concentration below 3 mol/L, the separation factor is high due to the high W-precipitation rate. Furthermore, the method is also effective when it is applied to industrial solution containing some other impurities. All these indicate the ferrous salts have great potential for removing W from Mo on a commercial scale.
文摘Polyethylene (PE) films with additives consisting mainly of oleic acid and ferrous ions were subjected to accelerated degradation at simulated composting temperatures.Based on Fourier transform infrared spectroscopy and measurements of mechanical properties and viscosity average molecular weight,the degradation of the films was characterized and the degradation mechanism was discussed.The films containing additives with ferrous ions represent considerable decreases in molecular weight,and the carbonyl groups and hydroperoxides in the aging films show different trends of increase with the aging time.These results indicate that the ferrous ion plays an important role in the degradation of PE films and accelerates the degradation of PE.
基金Project(2013A090100013)supported by the Special Project on the Integration of Industry,Education and Research of Guangdong Province,ChinaProject(201407300993)supported by the High Technology Research and Development Program of Xinjiang Uygur Autonomous Region,China
文摘Magnetite concentrate was recovered from ferrous sulphate by co-precipitation and magnetic separation. In co-precipitation process, the effects of reaction conditions on iron recovery were studied, and the optimal reaction parameters are proposed as follows: n(CaO)/n(Fe2+) 1.4:1, reaction temperature 80 ℃, ferrous ion concentration 0.4 mol/L, and the final mole ratio of Fe3+ to FJ+ in the reaction solution 1.9-2.1. In magnetic separation process, the effects of milling time and magnetic induction intensity on iron recovery were investigated. Wet milling played an important part in breaking the encapsulated magnetic phases. The results showed that the mixed product was wet-milled for 20 min before magnetic separation, the grade and recovery rate of iron in magnetite concentrate were increased from 51.41% and 84.15% to 62.05% and 85.35%, respectively.
基金Item Sponsored by National Natural Science Foundation of China (50204005 ,50374029)
文摘A great amount of ferrous tailings and slag cause severe damage to the ecological environment, which must be reclaimed and utilized. The composition, type, and characteristics of ferrous tailings and slag in China were introduced. The research status and the application outlook of glass ceramics made from ferrous tailings and slag were discussed. Glass ceramics made from ferrous tailings and slag can be applied to various fields, and it will be environmentally conscious materials in the 21st century.
文摘To study the effects of selenium on root oxidizing ability and yield of rice under ferrous stress, a pot culture experiment was conducted, the activity of glutathione peroxidase (GSH-Px) and the concentration of malonaldelyde (MDA) were determined. The root oxidizing ability and yield characters of rice were examined. Results showed that appropriate amount of Se enhanced the activity of glutathione peroxidase and the oxidizing ability of rice roots significantly, reduced the concentration of MDA, increased 1000-grain weight of rice, F = 26.96**, decreased empty and blighted grain rate, increased the rice yield, F = 11.53**, and enhanced the rice resistance under ferrous stress.
基金supported by the National Natural Science Foundation of China(Grant No.U1402234)the Guangxi Scientific Research and Technology Development Plan(Grants No.GuikeAB16380287 and GuikeAB17129025)+2 种基金the Public Welfare Fund of the Ministry of Environmental Protection of China(Grant No.201509049)the Program of International S & T Cooperation(Grant No.2016YFE0130700)the Fund of the General Research Institute for Nonferrous Metals(Grants No.53321 and 53348)
文摘The effect of hydraulic retention time (HRT) and pH on the biooxidation of ferrous iron during simulated acid mine drainage (AMD) treatment was investigated.The simulated AMD was highly acidic (pH 2.5), rich in iron (about 1700 mg/L) and copper (about 200 mg/L), and contained high concentrations of sulfate (about 4700 mg/L).The biooxidation of ferrous iron was studied in a laboratory-scale upflow packed bed bioreactor (PBR).The HRT was shortened stepwise from 40 h to 20 h, 13 h, and 8 h under the acidic environment at a pH value of 2.2.Then, the influent pH value was changed from 2.2 to 1.2 at a constant suitable HRT.Physiochemical and microbial community structure analyses were performed on water samples and stuffing collected from the bioreactor under different conditions.The results indicate that the efficiency of ferrous iron oxidation gradually decreased with the decrease of HRT, and when the HRT exceeded 13 h, ferrous iron in AMD was almost completely oxidized.In addition, the best efficiency of ferrous iron oxidation was achieved at the influent pH value of 1.8.Microbial community structure analyses show that Leptospirillum is the predominant genus attached in the bioreactor, and low influent pH values are suitable for the growth of Leptospirillum.
基金Projects(51804146,51964029,51664030,51564030)supported by the National Natural Science Foundation of ChinaProject(2018YFC1900402)supported by the National Key Research and Development Program of ChinaProject supported by the Analysis and Testing Center of Kunming University of Science and Technology,China
文摘The transformation behavior of ferrous sulfate was examined during hematite precipitation for iron removal in hydrometallurgical zinc.Specifically,the effects of the method used for oxygen supply(pre-crystallization or pre-oxidation of ferrous sulfate)and temperature(170–190℃)on the redissolution and oxidation–hydrolysis of ferrous sulfate were studied.The precipitation characteristics and phase characterization of the hematite product were investigated.The results showed that the solubility of ferrous sulfate was considerably lower at elevated temperatures.The dissolution behavior of ferrous sulfate crystals was influenced by both the concentrations of free acid and zinc sulfate and the oxydrolysis of ferrous ions.Rapid oxydrolysis of ferrous ions may serve as the dissolution driving force.Hematite precipitation proceeded via the following sequential steps:crystallization,redissolution,oxidation,and precipitation of ferrous sulfate.The dissolution of ferrous sulfate was slow,which helped to maintain a low supersaturation environment,thereby affording the production of high-grade hematite.
基金Project(2010B050200007)supported by the Foundation of Science and Technology Planning Project of Guangdong Province,ChinaProject(2011ZM0054)supported by the Fundamental Research Funds for the Central Universities,China+1 种基金Project(2011K0013)supported by the Research Fund Program of Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology,ChinaProject(2012)supported by the Research Funds of Guangdong Provincial Key Laboratory of Atmospheric environment and Pollution Control,China
文摘In the interest of accelerating aniline degradation, Fe2+ and chelated Fe2+ activated persulfate oxidations were investigated in neutral pH condition. Three kinds of chelating agents were selected including citric acid, oxalic acid and ethylenediamine tetraaceatate(EDTA) to maintain available Fe2+. The results indicate that the concentration of chelating agent and ferrous ion didn't follow a linear relationship with the degradation rate of aniline. A 1/1 ratio of chelating agent/Fe2+ results in a higher degradation rate compared to the results by other ratios. The oxidation enhancement factor using oxalic acid was found to be relatively low. In contrast, citric acid is more suitable chelating agent in the ferrous iron activated persulfate system and aniline exhibits a highest degradation with a persulfate/Fe2+/citric acid/aniline molar ratio of 50/25/25/1 compared to other molar ratios.
基金This work was supported by Science Challenge Project(Nos.TZ2016006-0103 and TZ2016006-0107-02)National Natural Science Foundation of China(Nos.90923025 and 51905194)Science Fund for Creative Research Groups of NSFC(No.51621064).The sincere thanks are given to Professor Zhang Xinquan(Shanghai Jiao Tong University)for his comments,and Mr Xu Yongbo for his kind assistance.
文摘Diamond tools play a critical role in ultra-precision machining due to their excellent physical and mechanical material properties,such as that cutting edge can be sharpened to nanoscale accuracy.However,abrasive chemical reactions between diamond and non-diamond-machinable metal elements,including Fe,Cr,Ti,Ni,etc,can cause excessive tool wear in diamond cutting of such metals and most of their alloys.This paper reviews the latest achievements in the chemical wear and wear suppression methods for diamond tools in cutting of ferrous metals.The focus will be on the wear mechanism of diamond tools,and the typical wear reduction methods for diamond cutting of ferrous metals,including ultrasonic vibration cutting,cryogenic cutting,surface nitridation and plasma assisted cutting,etc.Relevant commercially available devices are introduced as well.Furthermore,future research trends in diamond tool wear suppression are discussed and examined.
基金Project(2016JJ6017) supported by Hunan Provincial Natural Science Foundation of,ChinaProject(15C0245) supported by the Research Foundation of Education Bureau of Hunan Province,ChinaProject(2013A090100013) supported by the Special Foundation of Major Science&Technology Program of Guangdong Province,China
文摘The effect of PEG dispersant on the magnetic separation of magnetite(Fe3O4) synthesized from ferrous sulfate solution via co-precipitation method with calcium hydroxide as the precipitant was investigated. The results indicated that a PEG dispersant could significantly affect Fe3O4 recovery. Adding PEG during the preparation of Fe3O4 was unfavorable for Fe3O4 recovery. When the PEG-6000 concentration was increased from 0 to 8 g/L, the iron grade and median particle size of the Fe3O4 product decreased from 65.58% and 2.35 μm to 57.79% and 1.35 μm, respectively. However, adding PEG during the wet milling of the mixed product promoted the subsequent recovery of Fe3O4. When the amount of PEG-200 increased from 0% to 4% of the powder mass, the grade of iron in the Fe3O4 product increased from 65.58% to 68.32%. While the relative molecular mass of PEG at an amount of 4% of the powder mass increased from 200 to 20000, the grade of iron was reduced from 68.32% to 66.70%.
文摘Reduction rate of ferrous oxide in smelting reduction with iron bath has been studied. The main affecting factors on reduction rate, such as composition of the melt, temperature of molten bath, basicity of slag and the way of supplying carbonaceous materials have also been investigated.
基金Funded by the National High-Tech R&D Program(863 Program)of China(No.2012AA040405)
文摘We numerically simulated and experimentally studied the interfacialcarbon diffusion between diamond tooland workpiece materials.A diffusion modelwith respect to carbon atoms of diamond toolpenetrating into chips and machined surface was established.The numericalsimulation results of the diffusion process revealthat the distribution laws of carbon atoms concentration have a close relationship with the diffusion distance,the diffusion time,and the originalcarbon concentration of the work material.In addition,diamond face cutting tests of die steels with different carbon content are conducted at different depth of cuts and feed rates to verify the previous simulation results.The micro-morphology of the chips is detected by scanning electron microscopy.Energy dispersive X-ray analysis was proposed to investigate the change in carbon content of the chips surface.The experimentalresults of this work are of benefit to a better understanding on the diffusion wear mechanism in single crystaldiamond cutting of ferrous metals.Moreover,the experimentalresults show that the diffusion wear of diamond could be reduced markedly by applying ultrasonic vibration to the cutting toolcompared with conventionalturning.
基金Project(2013AA064003)supported by the National Technology Research and Development Program of ChinaProject(51564033)supported by the National Natural Science Foundation of ChinaProject(2016FA023)supported by the Yunnan Applied Basic Research(CNMRCUXT1403)State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization,Kunming University of Science and Technology,China
文摘The preparation of microsized hematite powder from ferrous sulfate using microwave calcination was investigated based on the TG/DTG curves. The decomposition of industrial ferrous sulfate under air atmosphere was divided into three stages, and a ferrous sulfate sample added with 15% Fe_2O_3 could strongly absorb microwave energy. Therefore, preparing hematite powder from ferrous sulfate using microwave calcination was feasible. Hematite was obtained under the following optimized conditions: calcination temperature, 850 °C; microwave power, 650 W; and sample amount, 40 g. The obtained hematite satisfied the first-grade quality requirements. The total ferrum value was more than 58%, and the total sulfur and phosphorus contents were less than 0.5% and 0.2%, respectively. X-ray powder diffraction and scanning electron microscopy were used to characterize the structure and morphology of microsized hematite powder. The particles were non-spherical in shape, and the average particle size distribution was 10.45 μm. This work provides new potential applications for waste ferrous sulfate.
文摘Objective: To compare the efficacy and compliance of the conventional therapy of iron deficiency anemia (ferrous sulfate) with the new forms of therapy chewable iron tablets: (iron polymaltose complex) in the treatment of iron deficiency anemia in pregnant women. Methods: This Randomized Control Trial study included 290 pregnant women with iron deficiency anemia, and they were randomly allocated to a control group who received ferrous sulfate capsules for two months and study group who received iron polymaltose complex chewable tablets for two months. Complete Blood Picture (hemoglobin level and hematocrit level) and Serum ferritin level were done after four and eight weeks to determine the efficacy. In addition, any complains or side effects had been reported to assess the tolerability of the drugs. Two-factor repeated-measures analysis of variance (ANOVA) was used to compare the change in hemoglobin and serum ferritin levels in both groups. Results: There was no statistical significant difference between the two research groups as regards baseline hemoglobin, and at week 4 from onset of treatment (p values = 0.990, 0.112, consecutively). However, there was statistical significant difference on week 8 of continuous drug intake in both groups in which the iron poly maltose complex research group had significantly higher hemoglobin levels (p value = 0.006). Conclusion: The results of the study showed oral iron polymaltose complex increases Hemoglobin and serum ferritin levels more than oral ferrous sulfate and produces less adverse effects than ferrous sulfate.
文摘The reduction of less stable ferric hydroxides and formation of ferrous phases is critical for the fate of phosphorus in anaerobic soils and sediments. The interaction between ferrous iron and phosphate was investigated experimentally during the reduction of synthetic ferrihydrite with natural organic materials as carbon source. Ferrihydrite was readily reduced by dissimilatory iron reducing bacteria (DIRB) with between 52% and 73% Fe(III) converted to Fe(II) after 31 days, higher than without DIRB. Formation of ferrous phases was linearly coupled to almost complete removal of both aqueous and exchangeable phosphate. Simple model calculations based on the incubation data suggested ferrous phases bound phosphate with a molar ratio of Fe(II):P between 1.14 - 2.25 or a capacity of 246 - 485 mg·P·g-1 Fe(II). XRD analysis indicated that the ratio of Fe(II): P was responsible for the precipitation of vivianite (Fe3(PO4)2·8H2O), a dominant Fe(II) phosphate mineral in incubation systems. When the ratio of Fe(II):P was more than 1.5, the precipitation of Fe(II) phosphate was soundly crystallized to vivianite. Thus, reduction of ferric iron provides a mechanism for the further removal of available phosphate via the production of ferrous phases, with anaerobic soils and sediments potentially exhibiting a higher capacity to bind phosphate than some aerobic systems.
基金financially supported by the Special Project on the Integration of Industry, Education and Research of Guangdong Province, China (No. 20013A090100013)by the High Technology Research and Development Program of Xinjiang Uygur Autonomous Region of China (No. 201407300993)
文摘The present study was conducted to elucidate the influence of impurities in waste ferrous sulfate on its recovery of magnetite. Ferrous sulfate solution was purified by the addition of Na OH solution to precipitate impurities, and magnetite was recovered from ferrous sulfate solution without and with purification pretreatment. Calcium hydroxide was added to the solution of ferrous sulfate as a precipitator. A mixed product of magnetite and gypsum was subsequently obtained by air oxidation and heating. Wet-milling was performed prior to magnetic separation to recover magnetite from the mixed products. The results show that with the purification pretreatment, the grade of iron in magnetite concentrate increased from 62.05% to 65.58% and the recovery rate of iron decreased from 85.35% to 80.35%. The purification pretreatment reduced the conglutination between magnetite and gypsum, which favors their subsequent magnetic separation. In summary, a higher-grade magnetite with a better crystallinity and a larger particle size of 2.35 μm was obtained with the purification pretreatment.
文摘This paper discusses the toxicity and mobility of chromium species. And it presents the extent and kinetics of reductive remediation of hexavalent chromium, Cr+ using ferrous ion, Fe2+. Molar ratios of 1:3 and 1:6 of Cr (VI) to Fe (II) were used. Integral method of data analysis showed reaction followed second-order kinetics with R square values near unity. Reaction was initially fast but with a rapid precipitation attributed to Cr (III)-Fe (III) in previous studies. This colloidal precipitate ultimately stops the reaction, which explains while conversion efficiency increases with increased molar ratio of Cr (VI) to Fe (II). The impact of pH was investigated by adjusting the Cr (VI)-Fe (II) medium to pH 2.78, 5.24, 7.00, 9.00 and 11.96 using predetermined drops of acid or base. Reaction was more rapid under alkaline conditions with higher extent of degradation consistent with previous research. In soil system, mass transfer limitation was hardly noticed as high extent of reduction was recorded relative to aqueous phase. The high solubility of Cr (VI) aided the release into the aqueous media for reduction by ferrous sulfate.
文摘In this paper, Fenton process was determined to be an effective technique to treat the refractory Nonylphenol ethoxylates (NPEOs) wastewater. The COD removal efficien-cies above 89% were obtained when the initial COD concentration was 12000mg/L. However, A large number of ferric sludge (SS=8.724g/L) would be produced after the Fenton oxidation of the wastewater and must be disposed appropriately. A novel process for Fenton sludge reused by low-cost ferrous sulfide (FeS) was also investi-gated. Experimental results show that the Fenton sludge could be reduced to produce a certain amount of Fe2+ in the acidic mixed liquor by ferrous sulfide. This mixed liquor from Fenton sludge could be used as the new catalyst in the Fenton process and was also highly effective for the NPEOs wastewater treatment. The residual ferrous sulfide from the mixed liquor could be used for the next batch of the