The pan-Arctic is confronted with air pollution transported from lower latitudes.Observations have shown that aerosols help increase plant photosynthesis through the diffuse radiation fertilization effects(DRFEs).Whil...The pan-Arctic is confronted with air pollution transported from lower latitudes.Observations have shown that aerosols help increase plant photosynthesis through the diffuse radiation fertilization effects(DRFEs).While such DRFEs have been explored at low to middle latitudes,the aerosol impacts on pan-Arctic ecosystems and the contributions by anthropogenic and natural emission sources remain less quantified.Here,we perform regional simulations at 0.2o×0.2ousing a well-validated vegetation model(Yale Interactive terrestrial Biosphere,YIBs)in combination with multi-source of observations to quantify the impacts of aerosol DRFEs on the net primary productivity(NPP)in the pan-Arctic during 2001-19.Results show that aerosol DRFEs increase pan-Arctic NPP by 2.19 Pg C(12.8%)yr^(-1)under clear-sky conditions,in which natural and anthropogenic sources contribute to 8.9% and 3.9%,respectively.Under all-sky conditions,such DRFEs are largely dampened by cloud to only 0.26 Pg C(1.24%)yr^(-1),with contributions of 0.65% by natural and 0.59% by anthropogenic species.Natural aerosols cause a positive NPP trend of 0.022% yr^(-1)following the increased fire activities in the pan-Arctic.In contrast,anthropogenic aerosols induce a negative trend of-0.01% yr^(-1)due to reduced emissions from the middle latitudes.Such trends in aerosol DRFEs show a turning point in the year of 2007 with more positive NPP trends by natural aerosols but negative NPP trends by anthropogenic aerosols thereafter.Though affected by modeling uncertainties,this study suggests a likely increasing impact of aerosols on terrestrial ecosystems in the pan-Arctic under global warming.展开更多
In the restoration of degraded wetlands,fertilization can improve the vegetation-soil-microorganisms complex,thereby affecting the organic carbon content.However,it is currently unclear whether these effects are susta...In the restoration of degraded wetlands,fertilization can improve the vegetation-soil-microorganisms complex,thereby affecting the organic carbon content.However,it is currently unclear whether these effects are sustainable.This study employed Biolog-Eco surveys to investigate the changes in vegetation characteristics,soil physicochemical properties,and soil microbial functional diversity in degraded alpine wetlands of the source region of the Yellow River at 3 and 15 months after the application of nitrogen,phosphorus,and organic mixed fertilizer.The following results were obtained:The addition of nitrogen fertilizer and organic compost significantly affects the soil organic carbon content in degraded wetlands.Three months after fertilization,nitrogen addition increases soil organic carbon in both lightly and severely degraded wetlands,whereas after 15 months,organic compost enhanced the soil organic carbon level in severely degraded wetlands.Structural equation modeling indicates that fertilization decreases the soil pH and directly or indirectly influences the soil organic carbon levels through variations in the soil water content and the aboveground biomass of vegetation.Three months after fertilization,nitrogen fertilizer showed a direct positive effect on soil organic carbon.However,organic mixed fertilizer indirectly reduced soil organic carbon by increasing biomass and decreasing soil moisture.After 15 months,none of the fertilizers significantly affected the soil organic carbon level.In summary,it can be inferred that the addition of nitrogen fertilizer lacks sustainability in positively influencing the organic carbon content.展开更多
Afforestation and reforestation are useful approaches to improve carbon sequestration. With the advent of forest plantations, growing environment conditions have become increasingly restrictive for light, soil nutrien...Afforestation and reforestation are useful approaches to improve carbon sequestration. With the advent of forest plantations, growing environment conditions have become increasingly restrictive for light, soil nutrients, and interactions between trees to acquire available resources. Tree biomass data are essential for understanding the forest carbon cycle and plant adaptations to the environment. The distribution of tree biomass depends on the sum of multiple stand conditions. The data are from a dedicated experiment with two very contrasting areas of fertility, and two planting densities, including a high density at planting in order to achieve thinning. The plant material consists of the high-performance clones of Eucalyptus urophylla × E. grandis and the reference clone E. PF1. We hypothesize that the distribution of biomass changes as the intensity of competition changes and that this is accelerated by the fertility of the sites in time. The results indicate that fertilization, planting density and clones have an impact on biomass partitioning.展开更多
The aim was to clarify the environmental driving factors of soil fertility indicators in artificial forests of Guangxi and comprehensively evaluate the soil fertility level.By collecting data on the current status of ...The aim was to clarify the environmental driving factors of soil fertility indicators in artificial forests of Guangxi and comprehensively evaluate the soil fertility level.By collecting data on the current status of soil in artificial forests,the spatial distribution of major soil fertility indicators was analyzed,and the distribution map of the fertility index of artificial forests in the entire region and the comprehensive fertility index of artificial forests of different soil types were obtained.Canonical correspondence analysis method was used to analyze soil fertility indicators and environmental factors,and the environmental driving factors of soil fertility indicators for artificial forests of the main soil types in Guangxi were obtained.The results showed that over 90%of the soil fertility index of artificial forests in the entire region was between 0.20 and 0.50.The order of soil fertility index of different soil types of artificial forests from high to low was yellow brown soil>yellow red soil>yellow soil>red soil>limestone soil>latosolic red soil>laterite.In artificial forests of latosolic red soil,the correlation between soil alkaline nitrogen and organic matter,annual average temperature was high,while the correlation between soil available phosphorus and organic matter,pH was high,and the correlation between soil available potassium and environmental factors such as slope,altitude,rainfall,accumulated temperature,and slope aspect was high.In artificial forests of red soil,the correlation between soil alkaline nitrogen and slope,altitude was high,while the correlation between soil available phosphorus and accumulated temperature,rainfall was high,and the correlation between soil available potassium and pH was high.In artificial forests of limestone soil,there was a high correlation between soil alkaline nitrogen and slope,organic matter,a high correlation between soil available phosphorus and accumulated temperature,rainfall,and a high correlation between soil available potassium and pH.展开更多
This study consisted to evaluate the effects of ecological practices on the yield performance of the JEWEL of orange-fleshed sweet potato (Ipomoea batatas (L.) Lam). The study was conducted in a Sudano-Sahelian croppi...This study consisted to evaluate the effects of ecological practices on the yield performance of the JEWEL of orange-fleshed sweet potato (Ipomoea batatas (L.) Lam). The study was conducted in a Sudano-Sahelian cropping system (Lantargou, eastern region of Burkina Faso). Agro-ecological practices consisted of the inputs of 3.20 t/ha of compost + 2.45 t/ha of wood ash (CO + WA);4.90 t/ha of wood ash (WA);6.40 t/ha of compost (CO) were compared to control with no inputs (T<sub>0</sub>). Each treatment was repeated four times. The crop management consisted of plowing, harrowing, raising of ridges with 40 cm height, burying of treatments, transplanting of cuttings, two weeding’s, and using of biopesticide called PIOL for crop protection. Composite soil samples per treatment were also collected at tuber harvest and analyzed to determine the effects of treatments on residual soil fertility. Results showed that the plant heights and diameters under the CO were significantly (P < 0.001) improved by 16% and 12% compared to T<sub>0</sub>. The WA treatment significantly increased the number of large tubers by 43% (P ≤ 0.01) compared to T<sub>0</sub>. Total tuber numbers, large tuber numbers and tuber yields of sweet potato under CO + WA were significantly (P < 0.001) and respectively improved by 27%, 50% and 31% compared to T<sub>0</sub>. All treatments increased soil organic matter, N, P and K contents, and reduced soil acidity compared with those obtained under T<sub>0</sub>. Soil K content was improved by 39% under CO + WA, and soil N content by 34% under WA compared to T<sub>0</sub>. Soil C/N ratio under CO + WA was reduced by 20% compared others treatments. But, the CO + WA treatment outperformed by improving residual soil N content by 38%, and the WA treatment by increasing soil K content by 50% compared to T<sub>0</sub>. In addition, soil pHH<sub>2</sub>O increased by 1.2 units under WA treatment compared to T<sub>0</sub>. As conclusion, the application of 6.4 t/ha of compost performed well to improve the vegetative growth of orange-fleshed sweet potato while the inputs of 3.2 t/ha of compost + 2.45 t/ha of wood ash were efficacy to significantly increase the tuber yields and improve the residual fertility of soil.展开更多
Synthetic nitrogen(N)fertilizer has made a great contribution to the improvement of soil fertility and productivity,but excessive application of synthetic N fertilizer may cause agroecosystem risks,such as soil acidif...Synthetic nitrogen(N)fertilizer has made a great contribution to the improvement of soil fertility and productivity,but excessive application of synthetic N fertilizer may cause agroecosystem risks,such as soil acidification,groundwater contamination and biodiversity reduction.Meanwhile,organic substitution has received increasing attention for its ecologically and environmentally friendly and productivity benefits.However,the linkages between manure substitution,crop yield and the underlying microbial mechanisms remain uncertain.To bridge this gap,a three-year field experiment was conducted with five fertilization regimes:i)Control,non-fertilization;CF,conventional synthetic fertilizer application;CF_(1/2)M_(1/2),1/2 N input via synthetic fertilizer and 1/2 N input via manure;CF_(1/4)M_(3/4),1/4 N input synthetic fertilizer and 3/4 N input via manure;M,manure application.All fertilization treatments were designed to have equal N input.Our results showed that all manure substituted treatments achieved high soil fertility indexes(SFI)and productivities by increasing the soil organic carbon(SOC),total N(TN)and available phosphorus(AP)concentrations,and by altering the bacterial community diversity and composition compared with CF.SOC,AP,and the soil C:N ratio were mainly responsible for microbial community variations.The co-occurrence network revealed that SOC and AP had strong positive associations with Rhodospirillales and Burkholderiales,while TN and C:N ratio had positive and negative associations with Micromonosporaceae,respectively.These specific taxa are implicated in soil macroelement turnover.Random Forest analysis predicted that both biotic(bacterial composition and Micromonosporaceae)and abiotic(AP,SOC,SFI,and TN)factors had significant effects on crop yield.The present work strengthens our understanding of the effects of manure substitution on crop yield and provides theoretical support for optimizing fertilization strategies.展开更多
The optimized management of crop fertilization is very important for improving crop yield and reducing the consumption of chemical fertilizers.Critical nutrient values can be used for evaluating the nutritional status...The optimized management of crop fertilization is very important for improving crop yield and reducing the consumption of chemical fertilizers.Critical nutrient values can be used for evaluating the nutritional status of a crop,and they reflect the nutrient concentrations above which the plant is sufficiently supplied for achieving the maximum potential yield.Based on on-farm surveys of 504 farmers and 60 field experimental sites in the drylands of China,we proposed a recommended fertilization method to determine nitrogen(N),phosphorus(P),and potassium(K)fertilizer input rates for wheat production,and then validated the method by a field experiment at 66 different sites in northern China.The results showed that wheat grain yield varied from 1.1 to 9.2 t ha^(-1),averaging 4.6 t ha^(-1),and it had a quadratic relationship with the topsoil(0-20 cm)nitrate N and soil available P contents at harvest.However,yield was not correlated with the inputs of N,P,and K fertilizers.Based on the relationship(exponential decay model)between 95–105%of the relative yield and topsoil nitrate N,available P,and available K contents at wheat harvest from 60 field experiments,the topsoil critical nutrient values were determined as 34.6,15.6,and 150 mg kg^(-1)for soil nitrate N,available P,and available K,respectively.Then,based on five groups of relative yield(>125%,115–125%,105–115%,95–105%,and<95%)and the model,the five groups of topsoil critical nutrient levels and fertilization coefficients(Fc)were determined.Finally,we proposed a new method for calculating the recommended fertilizer input rate as:Fr=Gy×Nr×Fc,where Fr is the recommended fertilizer(N/P/K)input rate;Gy is the potential grain yield;Nr is the N(N_(rN)),P(N_(rP)),and K(N_(rK))nutrient requirements for wheat to produce 1,000 kg of grain;and Fc is a coefficient for N(N_c)/P(P_c)/K(K_c)fertilizer.A 2-year validated experiment confirmed that the new method reduced N fertilizer input by 17.5%(38.5 kg N ha^(-1))and P fertilizer input by 43.5%(57.5 kg P_(2)O_(5) ha^(-1))in northern China and did not reduce the wheat yield.This outcome can significantly increase the farmers’benefits(by 7.58%,or 139 US$ha^(-1)).Therefore,this new recommended fertilization method can be used as a tool to guide N,P,and K fertilizer application rates for dryland wheat production.展开更多
We studied changes in the concentrations of aggregate-cementing agents after different reclamation times and with different fertilization regimes,as well as the formation mechanism of aggregates in reclaimed soil,to p...We studied changes in the concentrations of aggregate-cementing agents after different reclamation times and with different fertilization regimes,as well as the formation mechanism of aggregates in reclaimed soil,to provide a theoretical basis for rapid reclamation of soil fertility in the subsidence area of coal mines in Shanxi Province,China.In this study,soil samples of 0–20 cm depth were collected from four fertilization treatments of a longterm experiment started in 2008:no fertilizer (CK),inorganic fertilizer (NPK),chicken manure compost (M),and50%inorganic fertilizer plus 50%chicken manure compost (MNPK).The concentrations of cementing agents and changes in soil aggregate size distribution and stability were analysed.The results showed that the formation of>2 mm aggregates,the aggregate mean weight diameter (MWD),and the proportion of>0.25 mm water-stable aggregates (WR_(0.25)) increased significantly after 6 and 11 years of reclamation.The concentration of organic cementing agents tended to increase with reclamation time,whereas free iron oxide (Fed) and free aluminium oxide(Ald) concentrations initially increased but then decreased.In general,the MNPK treatment signi?cantly increased the concentrations of organic cementing agents and CaCO_(3),and CaCO_(3) increased by 60.4%at 11 years after reclamation.Additionally,CaCO_(3) had the greatest effect on the stability of aggregates,promoting the formation of>0.25 mm aggregates and accounting for 54.4%of the variance in the proportion and stability of the aggregates.It was concluded that long-term reclamation is bene?cial for improving soil structure.The MNPK treatment was the most effective measure for increasing maize grain yield and concentration of organic cementing agents and CaCO_(3).展开更多
Background Despite their low abundance in sperm, mitochondria have diverse functions in this cell type, includ-ing energy production, signalling and calcium regulation. In humans, sperm mitochondrial DNA content(mtDNA...Background Despite their low abundance in sperm, mitochondria have diverse functions in this cell type, includ-ing energy production, signalling and calcium regulation. In humans, sperm mitochondrial DNA content(mtDNAc) has been reported to be negatively linked to sperm function and fertility. Yet, the association between mtDNAc and sperm function in livestock remains unexplored. For this reason, this study aimed to shed some light on the link between mtDNAc and sperm function and fertilising potential in pigs. A qPCR method for mtDNAc quantification was optimised for pig sperm, and the association of this parameter with sperm motility, kinematics, mitochondrial activity, and fertility was subsequently interrogated.Results First, the q PCR method was found to be sensitive and efficient for mtDNAc quantification in pig sperm. By using this technique, mtDNAc was observed to be associated to sperm motility, mitochondrial activity and in vivo, but not in vitro, fertility outcomes. Specifically, sperm with low mtDNAc were seen to exhibit greater motility but decreased mitochondrial activity and intracellular reactive oxygen species. Interestingly, samples with lower mtD-NAc showed higher conception and farrowing rates, but similar in vitro fertilisation rates and embryo development, when compared to those with greater mtDNAc.Conclusions These findings enrich our comprehension of the association of mtDNAc with sperm biology, and lay the foundation for future research into employing this parameter as a molecular predictor for sperm function and fer-tility in livestock.展开更多
Objective:To evaluate the effect of bilateral hypogastric artery ligation(BHGAL)on women's pregnancy outcomes and fertility rates in cases with severe postpartum hemorrhage.Methods:Patients hospitalized in a terti...Objective:To evaluate the effect of bilateral hypogastric artery ligation(BHGAL)on women's pregnancy outcomes and fertility rates in cases with severe postpartum hemorrhage.Methods:Patients hospitalized in a tertiary care center between 2007 and 2018 were included in the study.The records of cases were obtained from the hospital database,retrospectively.Maternal demographic data,morbidities or complications associated with BHGAL surgery,any additional haemostatic interventional or surgical procedures,preoperative admission and lowest postoperative haematocrit-hemoglobin values,blood products given,type of anaesthesia,intensive care unit(ICU)and length of hospital stay were recorded.In cases without surgical sterilization,future fertility and subsequent pregnancy outcomes were assessed for at least two years after operation.Information was obtained through face-to-face or telephone interviews with patients whose long-term fertility and subsequent pregnancy outcomes were assessed.Results:Sixty-eight patients with BHGAL surgery history were included in the study.26 Of 37 cases(70%)that did not undergo surgical sterilization had a desire for pregnancy after the surgery.Six of these cases(23%)were diagnosed with secondary infertility.The fertility rate of these cases was 77%,and subsequent pregnancy was detected in 20 women.A total of 25 pregnancies,including first and second pregnancies,developed,and 15 of these pregnancies resulted in term delivery,six preterm births,one stillbirth,and three abortions.Conclusions:The postoperative pregnancy rate was found to be higher than the rate of women with infertility problems,and this surgery does not seem to adversely affect pregnancy outcomes.This is a tertiary center experience and cohort studies with large patient series are needed.展开更多
The selection of the most motile and functionally competent sperm is an essential basis for in vitro fertilization(IVF)and normal embryonic development.Widely adopted clinical approaches for sperm sample processing in...The selection of the most motile and functionally competent sperm is an essential basis for in vitro fertilization(IVF)and normal embryonic development.Widely adopted clinical approaches for sperm sample processing intensely rely on centrifugation and wash steps that may induce mechanical damage and oxidative stress to sperm.Although a few microfluidic sperm sorting devices may avoid these adverse effects by exploiting intrinsic guidance mechanisms of sperm swimming,none of these approaches have been fully validated by clinical-grade assessment criteria.In this study,a microfluidic sperm sorting device that enables the selection of highly motile and functional sperm via their intrinsic thermotaxis is presented.Bioinspired by the temperature microenvironment in the fallopian tube during natural sperm selection,a microfluidic device with controllable temperature gradients along the sperm separation channel was designed and fabricated.This study investigated the optimal temperature conditions for human sperm selection and fully characterized thermotaxis-selected sperm with 45 human sperm samples.Results indicated that a temperature range of 35–36.5℃along the separation channel significantly improves human sperm motility rate((85.25±6.28)%vs.(60.72±1.37)%;P=0.0484),increases normal sperm morphology rate((16.42±1.43)%vs.(12.55±0.88)%;P<0.0001),and reduces DNA fragmentation((7.44±0.79)%vs.(10.36±0.72)%;P=0.0485)compared to the nonthermotaxis group.Sperm thermotaxis is species-specific,and selected mouse sperm displayed the highest motility in response to a temperature range of 36–37.5℃ along the separation channel.Furthermore,IVF experiments indicated that the selected sperm permitted an increased fertilization rate and improved embryonic development from zygote to blastocyst.This microfluidic thermotaxic selection approach will be translated into clinical practice to improve the IVF success rate for patients with oligozoospermia and asthenozoospermia.展开更多
Objective:To explore the relationship between Hashimoto's autoimmune hypothyroidism(HT)and male fertility,focusing on hormonal and seminal factors.Methods:A systematic literature search was conducted across databa...Objective:To explore the relationship between Hashimoto's autoimmune hypothyroidism(HT)and male fertility,focusing on hormonal and seminal factors.Methods:A systematic literature search was conducted across databases such as PubMed,Web of Science,EMBASE,Scopus,Cochrane,and Google Scholar,covering studies published from January 2000 to March 2024.Studies investigating the impact of HT on semen quality parameters and reproductive hormones were included.Pooled effect estimates were calculated using standard mean difference(SMD)and 95%confidence intervals(CI).Results:A total of 8 studies with 8965 participants were included.HT significantly affected semen quality and reproductive hormone levels.Specifically,there was a notable decrease in progressive morphology(SMD=-0.78;95%CI:-1.40 to-0.17;P=0.01)and sperm motility(SMD=-1.151;95%CI:-1.876 to-0.425;P=0.002).In addition,there were no significant changes in reproductive hormones,although there were elevated levels of luteinizing hormone(SMD=0.437;95%CI:0.000 to 0.874;P=0.050)and follicle-stimulating hormone(SMD=0.293;95%CI:-0.171 to 0.758;P=0.216),with a slight impact on testosterone levels(SMD=-1.143;95%CI:-2.487 to 0.200;P=0.095).Conclusions:This systematic review and meta-analysis provides robust evidence of the detrimental effects of HT on semen quality and reproductive hormones,underscoring the necessity for thorough evaluation and management of thyroid function in male infertility assessments.展开更多
Objective:To explore the impact of Ficus carica fruit aqueous extract on fertility parameters in streptozotocin(STZ)-induced male rats.Methods:Twenty-four male Sprague-Dawley rats were divided into four different grou...Objective:To explore the impact of Ficus carica fruit aqueous extract on fertility parameters in streptozotocin(STZ)-induced male rats.Methods:Twenty-four male Sprague-Dawley rats were divided into four different groups.All groups except a normal control group were induced with 50 mg/kg of streptozotocin(STZ)intravenously to induce diabetes.A positive control group was treated with an antidiabetic drug,metformin(500 mg/kg)whereas a negative control group remained untreated throughout the experiment.Meanwhile,another diabetic rat group received treatment with 400 mg/kg of aqueous Ficus carica fruit extract.Rats in the treatment group were administered Ficus carica fruit aqueous extract daily through forcefeeding via oral gavage for a 21-day period.Assessments included the sperm quality(count,motility and morphology),histology of the testes,serum testosterone and fasting blood glucose(FBG)level.Results:The FBG level of the Ficus carica-treated rats exhibited a significant decrease compared to the negative control group(P<0.05).Sperm quality analysis also indicated that the aqueous Ficus carica extract had significant positive effects on sperm count and motility(P<0.05).The histology of the testes in Ficus caricatreated rats revealed an improved cell arrangement in the germinal cell layer.Furthermore,serum testosterone level showed an increment in the Ficus carica treatment group in comparison to the negative control group.Conclusions:Our findings provide compelling evidence for the profertility and anti-hyperglycemic properties of aqueous Ficus carica fruit extract in diabetic-induced male rats.展开更多
Objective:To determine the relationship between teratozoospermia and sperm DNA fragmentation(SDF)in the human ejaculate.Methods:This retrospective study included 100 normozoospermic men as a control cohort(abnormal fo...Objective:To determine the relationship between teratozoospermia and sperm DNA fragmentation(SDF)in the human ejaculate.Methods:This retrospective study included 100 normozoospermic men as a control cohort(abnormal forms>14%),210 patients with a high level of abnormal forms(≤4%)and 65 patients presenting with a moderate level of abnormal forms(>4%to≤14%)based on the World Health Organization definitions.Sperm morphology was assessed using bright field microscopy.Sperm DNA fragmentation was assessed using the sperm chromatin dispersion assay.Non-parametric analyses were conducted to examine the relationship between abnormal sperm morphology and sperm DNA fragmentation;receiver operating characteristic(ROC)analyses were conducted to assess sensitivity and specificity of this relationship.Results:A correlation analysis revealed that the higher the proportion of abnormal spermatozoa in the ejaculate,the higher the level of SDF(Spearman's Rho=-0.230;P<0.001).Significant differences in the proportion of SDF were found when all cohorts were compared(P<0.001);these significant differences were also retained when the different cohorts were compared pairwise.ROC analysis showed a moderate but significant predictive value for SDF to differentiate patients with different levels of teratozoospemia.Conclusions:Although analysis of a more continuous range of values for teratozoospermia would help further clarify any causal relationship with SDF,there is clearly a synergistic or coincident affiliation between these variables that needs to be acknowledged by the clinician when interpreting the spermiogram.展开更多
In agricultural soils, phosphorus is often limited, leading farmers to employ artificial supplementation through both inorganic and organic fertilization methods due to its restricted availability. Soil fertilization ...In agricultural soils, phosphorus is often limited, leading farmers to employ artificial supplementation through both inorganic and organic fertilization methods due to its restricted availability. Soil fertilization has the potential to augment both the abundance and diversity of bacterial communities. Our study aimed to assess the effects of phosphate amendments, derived from natural phosphate rock, and chemical fertilizers (TSP, NPK), on the density and diversity of bacterial communities within the study plots. We developed and applied eight phosphate amendments during the initial cultivation cycle. Soil samples were collected post 1st and 2nd cultivation cycles, and the quantification of both total and cultivable phosphate-solubilizing bacteria (PSB) was conducted. Additionally, we analyzed bacterial community structure, α-diversity (Shannon Diversity Index, Evenness Index, Chao1 Index). The combination of natural phosphate rock (PR) and chemical fertilizers (TSP, NPK) significantly increased (p 7 bacteria/g dry soil) and phosphate-solubilizing bacteria (0.01 to 6.8 × 107 PSB/g dry soil) in comparison to unamended control soils. The diversity of bacterial phyla (Firmicutes, Actinobacteria, Proteobacteria, Halobacterota, Chloroflexia) observed under each treatment remained consistent regardless of the nature of the phosphate amendment applied. However, changes in the abundance of the bacterial phyla populations were observed as a function of the nature of the phosphate amendment or chemical fertilizer. It appears that the addition of excessive natural phosphate rock does not alter the number and the diversity of soil microorganisms population despite successive cultivation cycles. However, the addition of excessive chemical fertilizer reduces soil microorganisms density and structure after the 2nd cultivation cycle.展开更多
This research study explored the efficacy of leaf litter compost as a sustainable soil amendment with the objective of promoting soil health and mitigating the accumulation of potentially toxic elements. The investiga...This research study explored the efficacy of leaf litter compost as a sustainable soil amendment with the objective of promoting soil health and mitigating the accumulation of potentially toxic elements. The investigation encompassed the impact of various organic compost amendments, including leaf compost, cow dung manure, kitchen waste compost, municipal organic waste compost, and vermicompost. The study employed Inductively Coupled Plasma Mass Spectrometry (ICP-MS) to evaluate soil nutrient levels and concentrations of Potentially Toxic Elements (PTEs) such as arsenic, chromium, cadmium, mercury, lead, nickel, and lithium. The fertilization and bioremediation potential of these compost amendments are quantified using an indexing method. Results indicated a substantial increase in overall nutrient levels (carbon, nitrogen, phosphorus, potassium, and sulfur) in soils treated with leaf compost and other organic composts. Fertility indices (FI) are notably higher in compost-amended soils (ranging from 2.667 to 3.938) compared to those amended with chemical fertilizers (ranging from 2.250 to 2.813) across all soil samples. Furthermore, the mean concentrations of PTEs were significantly lower in soils treated with leaf compost and other organic compost amendments compared to those treated with chemical fertilizers amendments. The assessment through the indexing method revealed a high clean index (CI) for leaf compost amendment (ranging from 3.407 to 3.58), whereas the chemical fertilizer amendment exhibits a relatively lower CI (ranging from 2.78 to 3.20). Consequently, leaf compost and other organic composts exhibit the potential to enhance sustainable productivity, promoting soil health and environmental safety by improving nutrient levels and remediating potentially toxic elements in the soil.展开更多
A field experiment was carried out at Ismailia Research Station, Ismailia Governorate from 2020-2022 to improve the growth of Khaya senegalensis and Swietenia mahagoni by using a combination of mineral fertilizer (NPK...A field experiment was carried out at Ismailia Research Station, Ismailia Governorate from 2020-2022 to improve the growth of Khaya senegalensis and Swietenia mahagoni by using a combination of mineral fertilizer (NPK) and biological fertilizer (Azotobacter chroococcum, Bacillus megatherium, and Bacillus circulant) as recommended dose under new sandy soils conditions. Split plot designed with four treatments (Control, (50% Mineral fertilizer (M.) + 50% Biological fertilizer (Bio.)), 100% M. and 100% Bio.) of each species. Vegetative growth, leaf area, tree biomass, stored carbon, basal area, tree volume, and in the soil both of microbial account and mineral content were determined. The experimental results showed no significant differences between studied species among the most studied parameters except for Khaya senegalensis which gave the highest significant difference in root biomass and below-stored carbon than Swietenia mahagoni. Evidently, the highest significant growth parameters were 100% mineral fertilizer followed by (50% M. + 50% Bio.) as compared with control. No significant difference between 100% M. and (50% M. + 50% Bio.) of shoot dry biomass (15.19 and 12.02 kg, respectively) and above-stored carbon (0.28 and 0.22 Mt, respectively). Microbial account and mineral content in soil were improved after cultivation of tree species compared to before planting and control, especially with 50% mineral fertilizer and 50% bio-fertilizer treatment. In conclusion, a treatment containing 50% mineral fertilizer and 50% bio-fertilizer has led to the ideal Khaya senegalensis and Swietenia mahagoni growth in sandy soil for cheaper and sustainable.展开更多
Introduction: Solitary exostoses are the most common benign tumors of the fertile metaphyses of the long bones of children. Their radiological diagnosis of metaphyseal bone growth must be confirmed on pathological exa...Introduction: Solitary exostoses are the most common benign tumors of the fertile metaphyses of the long bones of children. Their radiological diagnosis of metaphyseal bone growth must be confirmed on pathological examination. These tumors can remain asymptomatic for a long time and reveal themselves during a particularly vascular complication. The objective of this study was to describe the epidemiological, diagnostic, therapeutic and evolutionary aspects of these tumors. Patient and Observation: We report the case of a 15-year-old adolescent girl, with no particular pathological history, received in the pediatric surgery department of the Donka National Hospital (HND) of the Conakry University Hospital for recurrent acute painful swelling of the lower third of the left thigh in an afebrile context accompanied by lameness and stopping school for a few days (2 - 3 days). The symptoms appear to have evolved over the past 3 years and after physical activities. It regresses with rest, analgesics and non-steroidal anti-inflammatory drugs. The notion of trauma and sickle cell disease was not reported in the patient's clinical history. It is the persistence of the symptomatology which motivates the said consultation. On palpation, a small hard mass is noted at the expense of the internal metaphysis of the left distal femur. Deep palpation of this area causes a tingling sensation and during rapid mobilization of the knee. The remainder of the orthopedic examination was unremarkable. Standard x-ray of the femur shows a bony growth with a pointed tip from the distal metaphysis of the left femur. On surgical exploration, we noted a wedge-shaped exostosis oriented towards the vastus medialis muscle. Histological examination of the surgical specimen confirms osteogenic exostosis. There is no recurrence after 2 years. Conclusion: The distal femoral metaphysis is the most common location of solitary osteochondromas in children. Their definitive diagnosis requires the histology of the surgical specimen. Only symptomatic exostoses should be operated on in children.展开更多
Excessive amounts of nitrogen(N)fertilizers are applied during wolfberry production,resulting in some soil problems as well as potential environmental risks in the Qinghai-Tibet Plateau.In this study,organic fertilize...Excessive amounts of nitrogen(N)fertilizers are applied during wolfberry production,resulting in some soil problems as well as potential environmental risks in the Qinghai-Tibet Plateau.In this study,organic fertilizers were used to replace part of the N fertilizer in wolfberry fields with different fertility levels.N fertilizer rates had 0,50,100,150,200,and 250 g N/plant.Organic fertilizer rates had 0,2,4,6,8,and 10 kg organic fertilizer/plant.The experimental treatments included 6 combinations of N0M10,N50M8,N100M6,N150M4,N200M2,and control was N250M0.The results showed that in the high-fertility soils,combinations of N150M4,N100M6 and N50M8 treatments were increased in yields,fruit shape index,flavonoid content,total phenol content,mineral nutrient content,and antioxidant activity of wolfberry fruits.Also they were improved in soil fertility and decreased in residual nitrate through the soil depth of 0-300 cm.In the soil with less fertility,fruit yield,amino acid contents,flavonoids,total phenols,mineral nutrients and antioxidant activity of fruits were increased by the N200M2,N150M4 and N100M6 treatments and soil fertility was improved as well.Also more residual nitrate was found in the depth of 0-100 cm of soil with both chemical and organic fertilizer compared with the control.Therefore,in the Qinghai-Tibet Plateau,combining decreased N fertilizer with organic fertilizer rather than chemical fertilizer alone could help farmers achieve satisfactory yields and quality of wolfberry fruits and reduce the risk of nitrate leaching.In conclusion,50-150 g/plant of N fertilizer combined with 4-8 kg/plant of organic fertilizer in high-fertility gardens and 100-200 g/plant of N fertilizer combined with 2-6 kg/plant of organic fertilizer in low-fertility gardens are recommended for wolfberry cultivation.展开更多
The unbalanced and inadequate use of fertilizers is one of the causes of soil degradation. Combined with the ever-increasing population, it is necessary to find sustainable agricultural production alternatives. The pr...The unbalanced and inadequate use of fertilizers is one of the causes of soil degradation. Combined with the ever-increasing population, it is necessary to find sustainable agricultural production alternatives. The present work aims to determine the effect of different rates and mixtutes of organic amendments on soil fertility and the performance of Sunflower (Helianthus annuus L.). In the field, treatments consisted of solid household waste and faecal sludge in the ratios of 3/5 (V1), and a mixture of faecal sludge and household waste in the ratio of 3/5 with 900 worms (V2). At the end of the composting process, V1, V2 composts and the poultry manure (PM) were applied at rates of 4, 5 and 6 t∙ha−1 in a randomized complete block design with three replications. Soil samples were collected before and after the experiment and analyzed. The main results revealed that at the end of the composting process, there was a progressive improvement in the physico-chemical properties of V1 and V2 composts. In particular, the C/N ratio, phosphorus (P) and total nitrogen (TN) initially at 16.49 ± 0.42 (V1, V2), 21.06 ± 0.07 mg∙kg−1 (V1, V2), 0.76% ± 0.08% (V1, V2) respectively, increased after 60 days to 12.40 ± 0.41 (V1), 9.74 ± 0.28 (V2) for C/N, 21.94 ± 0.63 mg∙kg−1 (V1) and 22.04 ± 0.04 mg∙kg−1 (V2) for P, 0.96% ± 0.0% (V1) and 1.22 ± 0.04 (V2) for TN. The application of 6 t∙ha−1of PM had the greatest influence on the diameter and weight of the flower heads (27.16 ± 4.01 t∙ha−1 and 230.83 ± 2.64 t∙ha−1), while 4 t∙ha−1 of V2 gave the tallest sunflower plants (110.07 ± 73.28 cm) as well as the diameter at the crown (19.30 ± 9.07 cm). However, CEC was most influenced by 4 t∙ha−1 of V1, while 4 t∙ha−1 of PM had the greatest effect on organic carbon and phosphorus. However, 5 t∙ha−1 of PM showed the highest sunflower production and yield (1.67 ± 0.21 t∙ha−1). The combination with 900 earthworms is recommended for composting and 5 t∙ha−1 of PM is recommended to obtain a better sunflower production.展开更多
基金jointly supported by the National Key Research and Development Program of China(Grant No.2022YFE0106500)Jiangsu Science Fund for Distinguished Young Scholars(Grant No.BK20200040)。
文摘The pan-Arctic is confronted with air pollution transported from lower latitudes.Observations have shown that aerosols help increase plant photosynthesis through the diffuse radiation fertilization effects(DRFEs).While such DRFEs have been explored at low to middle latitudes,the aerosol impacts on pan-Arctic ecosystems and the contributions by anthropogenic and natural emission sources remain less quantified.Here,we perform regional simulations at 0.2o×0.2ousing a well-validated vegetation model(Yale Interactive terrestrial Biosphere,YIBs)in combination with multi-source of observations to quantify the impacts of aerosol DRFEs on the net primary productivity(NPP)in the pan-Arctic during 2001-19.Results show that aerosol DRFEs increase pan-Arctic NPP by 2.19 Pg C(12.8%)yr^(-1)under clear-sky conditions,in which natural and anthropogenic sources contribute to 8.9% and 3.9%,respectively.Under all-sky conditions,such DRFEs are largely dampened by cloud to only 0.26 Pg C(1.24%)yr^(-1),with contributions of 0.65% by natural and 0.59% by anthropogenic species.Natural aerosols cause a positive NPP trend of 0.022% yr^(-1)following the increased fire activities in the pan-Arctic.In contrast,anthropogenic aerosols induce a negative trend of-0.01% yr^(-1)due to reduced emissions from the middle latitudes.Such trends in aerosol DRFEs show a turning point in the year of 2007 with more positive NPP trends by natural aerosols but negative NPP trends by anthropogenic aerosols thereafter.Though affected by modeling uncertainties,this study suggests a likely increasing impact of aerosols on terrestrial ecosystems in the pan-Arctic under global warming.
基金supported by the National Nature Science Foundations of China(32160269)the International Science and Technology Cooperation Project of Qinghai province of China(2022-HZ-817).
文摘In the restoration of degraded wetlands,fertilization can improve the vegetation-soil-microorganisms complex,thereby affecting the organic carbon content.However,it is currently unclear whether these effects are sustainable.This study employed Biolog-Eco surveys to investigate the changes in vegetation characteristics,soil physicochemical properties,and soil microbial functional diversity in degraded alpine wetlands of the source region of the Yellow River at 3 and 15 months after the application of nitrogen,phosphorus,and organic mixed fertilizer.The following results were obtained:The addition of nitrogen fertilizer and organic compost significantly affects the soil organic carbon content in degraded wetlands.Three months after fertilization,nitrogen addition increases soil organic carbon in both lightly and severely degraded wetlands,whereas after 15 months,organic compost enhanced the soil organic carbon level in severely degraded wetlands.Structural equation modeling indicates that fertilization decreases the soil pH and directly or indirectly influences the soil organic carbon levels through variations in the soil water content and the aboveground biomass of vegetation.Three months after fertilization,nitrogen fertilizer showed a direct positive effect on soil organic carbon.However,organic mixed fertilizer indirectly reduced soil organic carbon by increasing biomass and decreasing soil moisture.After 15 months,none of the fertilizers significantly affected the soil organic carbon level.In summary,it can be inferred that the addition of nitrogen fertilizer lacks sustainability in positively influencing the organic carbon content.
文摘Afforestation and reforestation are useful approaches to improve carbon sequestration. With the advent of forest plantations, growing environment conditions have become increasingly restrictive for light, soil nutrients, and interactions between trees to acquire available resources. Tree biomass data are essential for understanding the forest carbon cycle and plant adaptations to the environment. The distribution of tree biomass depends on the sum of multiple stand conditions. The data are from a dedicated experiment with two very contrasting areas of fertility, and two planting densities, including a high density at planting in order to achieve thinning. The plant material consists of the high-performance clones of Eucalyptus urophylla × E. grandis and the reference clone E. PF1. We hypothesize that the distribution of biomass changes as the intensity of competition changes and that this is accelerated by the fertility of the sites in time. The results indicate that fertilization, planting density and clones have an impact on biomass partitioning.
文摘The aim was to clarify the environmental driving factors of soil fertility indicators in artificial forests of Guangxi and comprehensively evaluate the soil fertility level.By collecting data on the current status of soil in artificial forests,the spatial distribution of major soil fertility indicators was analyzed,and the distribution map of the fertility index of artificial forests in the entire region and the comprehensive fertility index of artificial forests of different soil types were obtained.Canonical correspondence analysis method was used to analyze soil fertility indicators and environmental factors,and the environmental driving factors of soil fertility indicators for artificial forests of the main soil types in Guangxi were obtained.The results showed that over 90%of the soil fertility index of artificial forests in the entire region was between 0.20 and 0.50.The order of soil fertility index of different soil types of artificial forests from high to low was yellow brown soil>yellow red soil>yellow soil>red soil>limestone soil>latosolic red soil>laterite.In artificial forests of latosolic red soil,the correlation between soil alkaline nitrogen and organic matter,annual average temperature was high,while the correlation between soil available phosphorus and organic matter,pH was high,and the correlation between soil available potassium and environmental factors such as slope,altitude,rainfall,accumulated temperature,and slope aspect was high.In artificial forests of red soil,the correlation between soil alkaline nitrogen and slope,altitude was high,while the correlation between soil available phosphorus and accumulated temperature,rainfall was high,and the correlation between soil available potassium and pH was high.In artificial forests of limestone soil,there was a high correlation between soil alkaline nitrogen and slope,organic matter,a high correlation between soil available phosphorus and accumulated temperature,rainfall,and a high correlation between soil available potassium and pH.
文摘This study consisted to evaluate the effects of ecological practices on the yield performance of the JEWEL of orange-fleshed sweet potato (Ipomoea batatas (L.) Lam). The study was conducted in a Sudano-Sahelian cropping system (Lantargou, eastern region of Burkina Faso). Agro-ecological practices consisted of the inputs of 3.20 t/ha of compost + 2.45 t/ha of wood ash (CO + WA);4.90 t/ha of wood ash (WA);6.40 t/ha of compost (CO) were compared to control with no inputs (T<sub>0</sub>). Each treatment was repeated four times. The crop management consisted of plowing, harrowing, raising of ridges with 40 cm height, burying of treatments, transplanting of cuttings, two weeding’s, and using of biopesticide called PIOL for crop protection. Composite soil samples per treatment were also collected at tuber harvest and analyzed to determine the effects of treatments on residual soil fertility. Results showed that the plant heights and diameters under the CO were significantly (P < 0.001) improved by 16% and 12% compared to T<sub>0</sub>. The WA treatment significantly increased the number of large tubers by 43% (P ≤ 0.01) compared to T<sub>0</sub>. Total tuber numbers, large tuber numbers and tuber yields of sweet potato under CO + WA were significantly (P < 0.001) and respectively improved by 27%, 50% and 31% compared to T<sub>0</sub>. All treatments increased soil organic matter, N, P and K contents, and reduced soil acidity compared with those obtained under T<sub>0</sub>. Soil K content was improved by 39% under CO + WA, and soil N content by 34% under WA compared to T<sub>0</sub>. Soil C/N ratio under CO + WA was reduced by 20% compared others treatments. But, the CO + WA treatment outperformed by improving residual soil N content by 38%, and the WA treatment by increasing soil K content by 50% compared to T<sub>0</sub>. In addition, soil pHH<sub>2</sub>O increased by 1.2 units under WA treatment compared to T<sub>0</sub>. As conclusion, the application of 6.4 t/ha of compost performed well to improve the vegetative growth of orange-fleshed sweet potato while the inputs of 3.2 t/ha of compost + 2.45 t/ha of wood ash were efficacy to significantly increase the tuber yields and improve the residual fertility of soil.
基金supported by the National Key Research and Development Program of China(2022YFD2301403-2)the Major Special Project of Anhui Province,China(2021d06050003)+2 种基金the Postdoctoral Foundation of Anhui Province,China(2022B638)the Special Project of Zhongke Bengbu Technology Transfer Center,China(ZKBB202103)the Grant of the President Foundation of Hefei Institutes of Physical Science of Chinese Academy of Sciences(YZJJ2023QN37)。
文摘Synthetic nitrogen(N)fertilizer has made a great contribution to the improvement of soil fertility and productivity,but excessive application of synthetic N fertilizer may cause agroecosystem risks,such as soil acidification,groundwater contamination and biodiversity reduction.Meanwhile,organic substitution has received increasing attention for its ecologically and environmentally friendly and productivity benefits.However,the linkages between manure substitution,crop yield and the underlying microbial mechanisms remain uncertain.To bridge this gap,a three-year field experiment was conducted with five fertilization regimes:i)Control,non-fertilization;CF,conventional synthetic fertilizer application;CF_(1/2)M_(1/2),1/2 N input via synthetic fertilizer and 1/2 N input via manure;CF_(1/4)M_(3/4),1/4 N input synthetic fertilizer and 3/4 N input via manure;M,manure application.All fertilization treatments were designed to have equal N input.Our results showed that all manure substituted treatments achieved high soil fertility indexes(SFI)and productivities by increasing the soil organic carbon(SOC),total N(TN)and available phosphorus(AP)concentrations,and by altering the bacterial community diversity and composition compared with CF.SOC,AP,and the soil C:N ratio were mainly responsible for microbial community variations.The co-occurrence network revealed that SOC and AP had strong positive associations with Rhodospirillales and Burkholderiales,while TN and C:N ratio had positive and negative associations with Micromonosporaceae,respectively.These specific taxa are implicated in soil macroelement turnover.Random Forest analysis predicted that both biotic(bacterial composition and Micromonosporaceae)and abiotic(AP,SOC,SFI,and TN)factors had significant effects on crop yield.The present work strengthens our understanding of the effects of manure substitution on crop yield and provides theoretical support for optimizing fertilization strategies.
基金supported by grants from the National Key Research and Development Program of China(2021YFD1900700 and 2018YFD0200401)the China Agricultural Research System(CARS-3)the Science and Technology Research Program of Shaanxi Province,China(2022PT-06)。
文摘The optimized management of crop fertilization is very important for improving crop yield and reducing the consumption of chemical fertilizers.Critical nutrient values can be used for evaluating the nutritional status of a crop,and they reflect the nutrient concentrations above which the plant is sufficiently supplied for achieving the maximum potential yield.Based on on-farm surveys of 504 farmers and 60 field experimental sites in the drylands of China,we proposed a recommended fertilization method to determine nitrogen(N),phosphorus(P),and potassium(K)fertilizer input rates for wheat production,and then validated the method by a field experiment at 66 different sites in northern China.The results showed that wheat grain yield varied from 1.1 to 9.2 t ha^(-1),averaging 4.6 t ha^(-1),and it had a quadratic relationship with the topsoil(0-20 cm)nitrate N and soil available P contents at harvest.However,yield was not correlated with the inputs of N,P,and K fertilizers.Based on the relationship(exponential decay model)between 95–105%of the relative yield and topsoil nitrate N,available P,and available K contents at wheat harvest from 60 field experiments,the topsoil critical nutrient values were determined as 34.6,15.6,and 150 mg kg^(-1)for soil nitrate N,available P,and available K,respectively.Then,based on five groups of relative yield(>125%,115–125%,105–115%,95–105%,and<95%)and the model,the five groups of topsoil critical nutrient levels and fertilization coefficients(Fc)were determined.Finally,we proposed a new method for calculating the recommended fertilizer input rate as:Fr=Gy×Nr×Fc,where Fr is the recommended fertilizer(N/P/K)input rate;Gy is the potential grain yield;Nr is the N(N_(rN)),P(N_(rP)),and K(N_(rK))nutrient requirements for wheat to produce 1,000 kg of grain;and Fc is a coefficient for N(N_c)/P(P_c)/K(K_c)fertilizer.A 2-year validated experiment confirmed that the new method reduced N fertilizer input by 17.5%(38.5 kg N ha^(-1))and P fertilizer input by 43.5%(57.5 kg P_(2)O_(5) ha^(-1))in northern China and did not reduce the wheat yield.This outcome can significantly increase the farmers’benefits(by 7.58%,or 139 US$ha^(-1)).Therefore,this new recommended fertilization method can be used as a tool to guide N,P,and K fertilizer application rates for dryland wheat production.
基金supported financially by the National Natural Science Foundation of China(41807102,U1710255-3 and 41907215)the Special Fund for Science and Technology Innovation Teams of Shanxi Province,China(202304051001042)the Distinguished and Excellent Young Scholar Cultivation Project of Shanxi Agricultural University,China(2022YQPYGC05)。
文摘We studied changes in the concentrations of aggregate-cementing agents after different reclamation times and with different fertilization regimes,as well as the formation mechanism of aggregates in reclaimed soil,to provide a theoretical basis for rapid reclamation of soil fertility in the subsidence area of coal mines in Shanxi Province,China.In this study,soil samples of 0–20 cm depth were collected from four fertilization treatments of a longterm experiment started in 2008:no fertilizer (CK),inorganic fertilizer (NPK),chicken manure compost (M),and50%inorganic fertilizer plus 50%chicken manure compost (MNPK).The concentrations of cementing agents and changes in soil aggregate size distribution and stability were analysed.The results showed that the formation of>2 mm aggregates,the aggregate mean weight diameter (MWD),and the proportion of>0.25 mm water-stable aggregates (WR_(0.25)) increased significantly after 6 and 11 years of reclamation.The concentration of organic cementing agents tended to increase with reclamation time,whereas free iron oxide (Fed) and free aluminium oxide(Ald) concentrations initially increased but then decreased.In general,the MNPK treatment signi?cantly increased the concentrations of organic cementing agents and CaCO_(3),and CaCO_(3) increased by 60.4%at 11 years after reclamation.Additionally,CaCO_(3) had the greatest effect on the stability of aggregates,promoting the formation of>0.25 mm aggregates and accounting for 54.4%of the variance in the proportion and stability of the aggregates.It was concluded that long-term reclamation is bene?cial for improving soil structure.The MNPK treatment was the most effective measure for increasing maize grain yield and concentration of organic cementing agents and CaCO_(3).
基金funded by the Ministry of Science and Innovation,Spain (AGL2017-88329-R, FPU18/00666 and PID2020-113320RB-I00)the Regional Government of Catalonia,Spain (2017-SGR-1229, 2020-FI-B-00412 and 2020-SGR-0900)the Catalan Institution for Research and Advanced Studies (ICREA)。
文摘Background Despite their low abundance in sperm, mitochondria have diverse functions in this cell type, includ-ing energy production, signalling and calcium regulation. In humans, sperm mitochondrial DNA content(mtDNAc) has been reported to be negatively linked to sperm function and fertility. Yet, the association between mtDNAc and sperm function in livestock remains unexplored. For this reason, this study aimed to shed some light on the link between mtDNAc and sperm function and fertilising potential in pigs. A qPCR method for mtDNAc quantification was optimised for pig sperm, and the association of this parameter with sperm motility, kinematics, mitochondrial activity, and fertility was subsequently interrogated.Results First, the q PCR method was found to be sensitive and efficient for mtDNAc quantification in pig sperm. By using this technique, mtDNAc was observed to be associated to sperm motility, mitochondrial activity and in vivo, but not in vitro, fertility outcomes. Specifically, sperm with low mtDNAc were seen to exhibit greater motility but decreased mitochondrial activity and intracellular reactive oxygen species. Interestingly, samples with lower mtD-NAc showed higher conception and farrowing rates, but similar in vitro fertilisation rates and embryo development, when compared to those with greater mtDNAc.Conclusions These findings enrich our comprehension of the association of mtDNAc with sperm biology, and lay the foundation for future research into employing this parameter as a molecular predictor for sperm function and fer-tility in livestock.
文摘Objective:To evaluate the effect of bilateral hypogastric artery ligation(BHGAL)on women's pregnancy outcomes and fertility rates in cases with severe postpartum hemorrhage.Methods:Patients hospitalized in a tertiary care center between 2007 and 2018 were included in the study.The records of cases were obtained from the hospital database,retrospectively.Maternal demographic data,morbidities or complications associated with BHGAL surgery,any additional haemostatic interventional or surgical procedures,preoperative admission and lowest postoperative haematocrit-hemoglobin values,blood products given,type of anaesthesia,intensive care unit(ICU)and length of hospital stay were recorded.In cases without surgical sterilization,future fertility and subsequent pregnancy outcomes were assessed for at least two years after operation.Information was obtained through face-to-face or telephone interviews with patients whose long-term fertility and subsequent pregnancy outcomes were assessed.Results:Sixty-eight patients with BHGAL surgery history were included in the study.26 Of 37 cases(70%)that did not undergo surgical sterilization had a desire for pregnancy after the surgery.Six of these cases(23%)were diagnosed with secondary infertility.The fertility rate of these cases was 77%,and subsequent pregnancy was detected in 20 women.A total of 25 pregnancies,including first and second pregnancies,developed,and 15 of these pregnancies resulted in term delivery,six preterm births,one stillbirth,and three abortions.Conclusions:The postoperative pregnancy rate was found to be higher than the rate of women with infertility problems,and this surgery does not seem to adversely affect pregnancy outcomes.This is a tertiary center experience and cohort studies with large patient series are needed.
基金supported by the Key Research and Development Project of Hubei Province,China(No.2021BCA111)。
文摘The selection of the most motile and functionally competent sperm is an essential basis for in vitro fertilization(IVF)and normal embryonic development.Widely adopted clinical approaches for sperm sample processing intensely rely on centrifugation and wash steps that may induce mechanical damage and oxidative stress to sperm.Although a few microfluidic sperm sorting devices may avoid these adverse effects by exploiting intrinsic guidance mechanisms of sperm swimming,none of these approaches have been fully validated by clinical-grade assessment criteria.In this study,a microfluidic sperm sorting device that enables the selection of highly motile and functional sperm via their intrinsic thermotaxis is presented.Bioinspired by the temperature microenvironment in the fallopian tube during natural sperm selection,a microfluidic device with controllable temperature gradients along the sperm separation channel was designed and fabricated.This study investigated the optimal temperature conditions for human sperm selection and fully characterized thermotaxis-selected sperm with 45 human sperm samples.Results indicated that a temperature range of 35–36.5℃along the separation channel significantly improves human sperm motility rate((85.25±6.28)%vs.(60.72±1.37)%;P=0.0484),increases normal sperm morphology rate((16.42±1.43)%vs.(12.55±0.88)%;P<0.0001),and reduces DNA fragmentation((7.44±0.79)%vs.(10.36±0.72)%;P=0.0485)compared to the nonthermotaxis group.Sperm thermotaxis is species-specific,and selected mouse sperm displayed the highest motility in response to a temperature range of 36–37.5℃ along the separation channel.Furthermore,IVF experiments indicated that the selected sperm permitted an increased fertilization rate and improved embryonic development from zygote to blastocyst.This microfluidic thermotaxic selection approach will be translated into clinical practice to improve the IVF success rate for patients with oligozoospermia and asthenozoospermia.
文摘Objective:To explore the relationship between Hashimoto's autoimmune hypothyroidism(HT)and male fertility,focusing on hormonal and seminal factors.Methods:A systematic literature search was conducted across databases such as PubMed,Web of Science,EMBASE,Scopus,Cochrane,and Google Scholar,covering studies published from January 2000 to March 2024.Studies investigating the impact of HT on semen quality parameters and reproductive hormones were included.Pooled effect estimates were calculated using standard mean difference(SMD)and 95%confidence intervals(CI).Results:A total of 8 studies with 8965 participants were included.HT significantly affected semen quality and reproductive hormone levels.Specifically,there was a notable decrease in progressive morphology(SMD=-0.78;95%CI:-1.40 to-0.17;P=0.01)and sperm motility(SMD=-1.151;95%CI:-1.876 to-0.425;P=0.002).In addition,there were no significant changes in reproductive hormones,although there were elevated levels of luteinizing hormone(SMD=0.437;95%CI:0.000 to 0.874;P=0.050)and follicle-stimulating hormone(SMD=0.293;95%CI:-0.171 to 0.758;P=0.216),with a slight impact on testosterone levels(SMD=-1.143;95%CI:-2.487 to 0.200;P=0.095).Conclusions:This systematic review and meta-analysis provides robust evidence of the detrimental effects of HT on semen quality and reproductive hormones,underscoring the necessity for thorough evaluation and management of thyroid function in male infertility assessments.
文摘Objective:To explore the impact of Ficus carica fruit aqueous extract on fertility parameters in streptozotocin(STZ)-induced male rats.Methods:Twenty-four male Sprague-Dawley rats were divided into four different groups.All groups except a normal control group were induced with 50 mg/kg of streptozotocin(STZ)intravenously to induce diabetes.A positive control group was treated with an antidiabetic drug,metformin(500 mg/kg)whereas a negative control group remained untreated throughout the experiment.Meanwhile,another diabetic rat group received treatment with 400 mg/kg of aqueous Ficus carica fruit extract.Rats in the treatment group were administered Ficus carica fruit aqueous extract daily through forcefeeding via oral gavage for a 21-day period.Assessments included the sperm quality(count,motility and morphology),histology of the testes,serum testosterone and fasting blood glucose(FBG)level.Results:The FBG level of the Ficus carica-treated rats exhibited a significant decrease compared to the negative control group(P<0.05).Sperm quality analysis also indicated that the aqueous Ficus carica extract had significant positive effects on sperm count and motility(P<0.05).The histology of the testes in Ficus caricatreated rats revealed an improved cell arrangement in the germinal cell layer.Furthermore,serum testosterone level showed an increment in the Ficus carica treatment group in comparison to the negative control group.Conclusions:Our findings provide compelling evidence for the profertility and anti-hyperglycemic properties of aqueous Ficus carica fruit extract in diabetic-induced male rats.
文摘Objective:To determine the relationship between teratozoospermia and sperm DNA fragmentation(SDF)in the human ejaculate.Methods:This retrospective study included 100 normozoospermic men as a control cohort(abnormal forms>14%),210 patients with a high level of abnormal forms(≤4%)and 65 patients presenting with a moderate level of abnormal forms(>4%to≤14%)based on the World Health Organization definitions.Sperm morphology was assessed using bright field microscopy.Sperm DNA fragmentation was assessed using the sperm chromatin dispersion assay.Non-parametric analyses were conducted to examine the relationship between abnormal sperm morphology and sperm DNA fragmentation;receiver operating characteristic(ROC)analyses were conducted to assess sensitivity and specificity of this relationship.Results:A correlation analysis revealed that the higher the proportion of abnormal spermatozoa in the ejaculate,the higher the level of SDF(Spearman's Rho=-0.230;P<0.001).Significant differences in the proportion of SDF were found when all cohorts were compared(P<0.001);these significant differences were also retained when the different cohorts were compared pairwise.ROC analysis showed a moderate but significant predictive value for SDF to differentiate patients with different levels of teratozoospemia.Conclusions:Although analysis of a more continuous range of values for teratozoospermia would help further clarify any causal relationship with SDF,there is clearly a synergistic or coincident affiliation between these variables that needs to be acknowledged by the clinician when interpreting the spermiogram.
文摘In agricultural soils, phosphorus is often limited, leading farmers to employ artificial supplementation through both inorganic and organic fertilization methods due to its restricted availability. Soil fertilization has the potential to augment both the abundance and diversity of bacterial communities. Our study aimed to assess the effects of phosphate amendments, derived from natural phosphate rock, and chemical fertilizers (TSP, NPK), on the density and diversity of bacterial communities within the study plots. We developed and applied eight phosphate amendments during the initial cultivation cycle. Soil samples were collected post 1st and 2nd cultivation cycles, and the quantification of both total and cultivable phosphate-solubilizing bacteria (PSB) was conducted. Additionally, we analyzed bacterial community structure, α-diversity (Shannon Diversity Index, Evenness Index, Chao1 Index). The combination of natural phosphate rock (PR) and chemical fertilizers (TSP, NPK) significantly increased (p 7 bacteria/g dry soil) and phosphate-solubilizing bacteria (0.01 to 6.8 × 107 PSB/g dry soil) in comparison to unamended control soils. The diversity of bacterial phyla (Firmicutes, Actinobacteria, Proteobacteria, Halobacterota, Chloroflexia) observed under each treatment remained consistent regardless of the nature of the phosphate amendment applied. However, changes in the abundance of the bacterial phyla populations were observed as a function of the nature of the phosphate amendment or chemical fertilizer. It appears that the addition of excessive natural phosphate rock does not alter the number and the diversity of soil microorganisms population despite successive cultivation cycles. However, the addition of excessive chemical fertilizer reduces soil microorganisms density and structure after the 2nd cultivation cycle.
文摘This research study explored the efficacy of leaf litter compost as a sustainable soil amendment with the objective of promoting soil health and mitigating the accumulation of potentially toxic elements. The investigation encompassed the impact of various organic compost amendments, including leaf compost, cow dung manure, kitchen waste compost, municipal organic waste compost, and vermicompost. The study employed Inductively Coupled Plasma Mass Spectrometry (ICP-MS) to evaluate soil nutrient levels and concentrations of Potentially Toxic Elements (PTEs) such as arsenic, chromium, cadmium, mercury, lead, nickel, and lithium. The fertilization and bioremediation potential of these compost amendments are quantified using an indexing method. Results indicated a substantial increase in overall nutrient levels (carbon, nitrogen, phosphorus, potassium, and sulfur) in soils treated with leaf compost and other organic composts. Fertility indices (FI) are notably higher in compost-amended soils (ranging from 2.667 to 3.938) compared to those amended with chemical fertilizers (ranging from 2.250 to 2.813) across all soil samples. Furthermore, the mean concentrations of PTEs were significantly lower in soils treated with leaf compost and other organic compost amendments compared to those treated with chemical fertilizers amendments. The assessment through the indexing method revealed a high clean index (CI) for leaf compost amendment (ranging from 3.407 to 3.58), whereas the chemical fertilizer amendment exhibits a relatively lower CI (ranging from 2.78 to 3.20). Consequently, leaf compost and other organic composts exhibit the potential to enhance sustainable productivity, promoting soil health and environmental safety by improving nutrient levels and remediating potentially toxic elements in the soil.
文摘A field experiment was carried out at Ismailia Research Station, Ismailia Governorate from 2020-2022 to improve the growth of Khaya senegalensis and Swietenia mahagoni by using a combination of mineral fertilizer (NPK) and biological fertilizer (Azotobacter chroococcum, Bacillus megatherium, and Bacillus circulant) as recommended dose under new sandy soils conditions. Split plot designed with four treatments (Control, (50% Mineral fertilizer (M.) + 50% Biological fertilizer (Bio.)), 100% M. and 100% Bio.) of each species. Vegetative growth, leaf area, tree biomass, stored carbon, basal area, tree volume, and in the soil both of microbial account and mineral content were determined. The experimental results showed no significant differences between studied species among the most studied parameters except for Khaya senegalensis which gave the highest significant difference in root biomass and below-stored carbon than Swietenia mahagoni. Evidently, the highest significant growth parameters were 100% mineral fertilizer followed by (50% M. + 50% Bio.) as compared with control. No significant difference between 100% M. and (50% M. + 50% Bio.) of shoot dry biomass (15.19 and 12.02 kg, respectively) and above-stored carbon (0.28 and 0.22 Mt, respectively). Microbial account and mineral content in soil were improved after cultivation of tree species compared to before planting and control, especially with 50% mineral fertilizer and 50% bio-fertilizer treatment. In conclusion, a treatment containing 50% mineral fertilizer and 50% bio-fertilizer has led to the ideal Khaya senegalensis and Swietenia mahagoni growth in sandy soil for cheaper and sustainable.
文摘Introduction: Solitary exostoses are the most common benign tumors of the fertile metaphyses of the long bones of children. Their radiological diagnosis of metaphyseal bone growth must be confirmed on pathological examination. These tumors can remain asymptomatic for a long time and reveal themselves during a particularly vascular complication. The objective of this study was to describe the epidemiological, diagnostic, therapeutic and evolutionary aspects of these tumors. Patient and Observation: We report the case of a 15-year-old adolescent girl, with no particular pathological history, received in the pediatric surgery department of the Donka National Hospital (HND) of the Conakry University Hospital for recurrent acute painful swelling of the lower third of the left thigh in an afebrile context accompanied by lameness and stopping school for a few days (2 - 3 days). The symptoms appear to have evolved over the past 3 years and after physical activities. It regresses with rest, analgesics and non-steroidal anti-inflammatory drugs. The notion of trauma and sickle cell disease was not reported in the patient's clinical history. It is the persistence of the symptomatology which motivates the said consultation. On palpation, a small hard mass is noted at the expense of the internal metaphysis of the left distal femur. Deep palpation of this area causes a tingling sensation and during rapid mobilization of the knee. The remainder of the orthopedic examination was unremarkable. Standard x-ray of the femur shows a bony growth with a pointed tip from the distal metaphysis of the left femur. On surgical exploration, we noted a wedge-shaped exostosis oriented towards the vastus medialis muscle. Histological examination of the surgical specimen confirms osteogenic exostosis. There is no recurrence after 2 years. Conclusion: The distal femoral metaphysis is the most common location of solitary osteochondromas in children. Their definitive diagnosis requires the histology of the surgical specimen. Only symptomatic exostoses should be operated on in children.
基金supported by The Open Project of State Key Laboratory of Plateau Ecology and Agriculture,Qinghai University(2020-KF-001)the Grand S&T Project of Qinghai Province(2019-NK-A11)the Key R&D Project of Qinghai Province(2018-NK-128).
文摘Excessive amounts of nitrogen(N)fertilizers are applied during wolfberry production,resulting in some soil problems as well as potential environmental risks in the Qinghai-Tibet Plateau.In this study,organic fertilizers were used to replace part of the N fertilizer in wolfberry fields with different fertility levels.N fertilizer rates had 0,50,100,150,200,and 250 g N/plant.Organic fertilizer rates had 0,2,4,6,8,and 10 kg organic fertilizer/plant.The experimental treatments included 6 combinations of N0M10,N50M8,N100M6,N150M4,N200M2,and control was N250M0.The results showed that in the high-fertility soils,combinations of N150M4,N100M6 and N50M8 treatments were increased in yields,fruit shape index,flavonoid content,total phenol content,mineral nutrient content,and antioxidant activity of wolfberry fruits.Also they were improved in soil fertility and decreased in residual nitrate through the soil depth of 0-300 cm.In the soil with less fertility,fruit yield,amino acid contents,flavonoids,total phenols,mineral nutrients and antioxidant activity of fruits were increased by the N200M2,N150M4 and N100M6 treatments and soil fertility was improved as well.Also more residual nitrate was found in the depth of 0-100 cm of soil with both chemical and organic fertilizer compared with the control.Therefore,in the Qinghai-Tibet Plateau,combining decreased N fertilizer with organic fertilizer rather than chemical fertilizer alone could help farmers achieve satisfactory yields and quality of wolfberry fruits and reduce the risk of nitrate leaching.In conclusion,50-150 g/plant of N fertilizer combined with 4-8 kg/plant of organic fertilizer in high-fertility gardens and 100-200 g/plant of N fertilizer combined with 2-6 kg/plant of organic fertilizer in low-fertility gardens are recommended for wolfberry cultivation.
文摘The unbalanced and inadequate use of fertilizers is one of the causes of soil degradation. Combined with the ever-increasing population, it is necessary to find sustainable agricultural production alternatives. The present work aims to determine the effect of different rates and mixtutes of organic amendments on soil fertility and the performance of Sunflower (Helianthus annuus L.). In the field, treatments consisted of solid household waste and faecal sludge in the ratios of 3/5 (V1), and a mixture of faecal sludge and household waste in the ratio of 3/5 with 900 worms (V2). At the end of the composting process, V1, V2 composts and the poultry manure (PM) were applied at rates of 4, 5 and 6 t∙ha−1 in a randomized complete block design with three replications. Soil samples were collected before and after the experiment and analyzed. The main results revealed that at the end of the composting process, there was a progressive improvement in the physico-chemical properties of V1 and V2 composts. In particular, the C/N ratio, phosphorus (P) and total nitrogen (TN) initially at 16.49 ± 0.42 (V1, V2), 21.06 ± 0.07 mg∙kg−1 (V1, V2), 0.76% ± 0.08% (V1, V2) respectively, increased after 60 days to 12.40 ± 0.41 (V1), 9.74 ± 0.28 (V2) for C/N, 21.94 ± 0.63 mg∙kg−1 (V1) and 22.04 ± 0.04 mg∙kg−1 (V2) for P, 0.96% ± 0.0% (V1) and 1.22 ± 0.04 (V2) for TN. The application of 6 t∙ha−1of PM had the greatest influence on the diameter and weight of the flower heads (27.16 ± 4.01 t∙ha−1 and 230.83 ± 2.64 t∙ha−1), while 4 t∙ha−1 of V2 gave the tallest sunflower plants (110.07 ± 73.28 cm) as well as the diameter at the crown (19.30 ± 9.07 cm). However, CEC was most influenced by 4 t∙ha−1 of V1, while 4 t∙ha−1 of PM had the greatest effect on organic carbon and phosphorus. However, 5 t∙ha−1 of PM showed the highest sunflower production and yield (1.67 ± 0.21 t∙ha−1). The combination with 900 earthworms is recommended for composting and 5 t∙ha−1 of PM is recommended to obtain a better sunflower production.