[Objective] This study was conducted to screen the best fertilization mode for potted Cymbidium sinense 'Qihei'. [Method] According to the contents of the N, P and K elements in C. sinense 'Qihei' and the main fer...[Objective] This study was conducted to screen the best fertilization mode for potted Cymbidium sinense 'Qihei'. [Method] According to the contents of the N, P and K elements in C. sinense 'Qihei' and the main fertilization modes used by producers and related literature information, the effects of 8 kinds of fertilization models on the growth of C. sinense 'Qihei' were studied. Twenty six morphologic and physiological indexes of C. sinense 'Qihei' growth were measured. [Result] Significant differences were shown on 21 indexes. [Conclusion] Based on the 26 in- dexes, the best fertilization mode included the steps of applying 14-14-14 (N-P20^- K20) slow-release fertilizer particles (8 g per bag) once in April, July and October, respectively; drip-applying 800 times of 30-10-10 water-soluble fertilizer once every half a month from April to September; and drip-applying 800 times of 15-5-30 wa- ter-soluble fertilizer (150 ml) once every half a month from October to December.展开更多
There is limited information about the influence of slow or controlled release fertilizer(S/CRF) on rice yield and quality. In this study, japonica rice cultivar Nanjing 9108 was used to study the effects of three d...There is limited information about the influence of slow or controlled release fertilizer(S/CRF) on rice yield and quality. In this study, japonica rice cultivar Nanjing 9108 was used to study the effects of three different S/CRFs(polymer-coated urea(PCU), sulfur-coated urea(SCU), and urea formaldehyde(UF)) and two fertilization modes(both S/CRF and common urea(CU) as basal fertilizer, S/CRF as basal and CU as tillering fertilizer) on rice yield and quality. CU only was applied separately as control(CK). Results showed that, rice grain yield, chalky kernel rate, chalky area, overall chalkiness, and the content of gliadin, glutenin, and protein, all showed the trends of UF〉PCU〉SCU within the same fertilization mode, and showed the trends of S/CRF as basal and CU as tillering fertilizer〉both S/CRF and CU as basal fertilizer within the same type of S/CRF. In contrast, the contents of amylose, amylopectin, and starch, as well as taste value, and peak and hot viscosity showed trends of SCU〉PCU〉UF, and the trends of both S/CRF and CU as basal fertilizer〉S/CRF as basal and CU as tillering fertilizer. Among S/CRF treatments and fertilization modes, taste values of cooked rice were positively correlated with amylose, amylopectin, and starch contents, as well as gel consistency, peak viscosity, hot viscosity, and cool viscosity, while negatively correlated with globulin, gliadin, glutenin, and protein contents. The types of S/CRF and fertilization modes are important for improving rice yield and quality. Compared to CK, higher yield and similar quality of rice was achieved with UF as basal and CU as tillering fertilizer, and similar yield with improved appearance and eating and cooking quality of rice was achieved with either both UF and CU as basal fertilizer, or PCU as basal and CU as tillering fertilizer.展开更多
Soll samples with three fertilization treatments (no fertilizer, corn straw and farm manure) collected from a Lou soil (Eum-orthic Anthrosol classfied using Chinese Soil Taxonomy) in northwestern China were analys...Soll samples with three fertilization treatments (no fertilizer, corn straw and farm manure) collected from a Lou soil (Eum-orthic Anthrosol classfied using Chinese Soil Taxonomy) in northwestern China were analysed for residual levels and their characteristics of organochlorine pesticides (α-HCH, β-HCH,γ-HCH, δ-HCH, HCB, o, p'-DDT, p, p'-DDT, o, p'- DDE, p,p'-DDE, p,p'-DDD, α-endosulfan, dieldrin and endrin). Organochlorine pesticides (OCPs) were detected in all soil samples except δ-HCH and their total concentrations ranged from 159.31 ± 9.00 to 179.77 ± 2.58 ng g^-1 with an order of HCHs 〉 DDTs 〉 (dieldrin + endrin) 〉 HCB 〉 α-endosulfan. Among all the compounds, γ-HCH had the highest concentration followed by p, p'-DDE. The residual levels of HCH isomers and DDT as well as their metabolites in soil with different fertilization treatments were in the order of γ-HCH 〉β-HCH ≈ α-HCH 〉 δ-HCH and p,p’-DDE 〉 p, p’-DDT 〉 o,p'-DDT 〉 p, p'-DDD ≈ o, p'-DDE, respectively. DDE/DDT ratios ranged from 1.59 ± 0.13 to 3.35± 0.16 and endrin/dieldrin ratios from 1.40 ±0.06 to 9.20± 4.05, both indicating no new occurrence of these pesticides in these soils, while α-HCH/γ-HCH ratios of 0.04 indicated a new input of lindane (almost pure γ-HCH) in the past several years. The farm manure treatments showed lower DDT residues than samples without fertilizer. Also addition of corn straw and farm manure increased soil organic matter content and decreased the soil pH which could retard the degradation of DDT in the soil.展开更多
Rational application of nitrogen (N) fertilizers is an important measure to raise N fertilizer recovery rate and reduce N loss.A two-year field experiment of rice-wheat rotation was employed to study the effects of ...Rational application of nitrogen (N) fertilizers is an important measure to raise N fertilizer recovery rate and reduce N loss.A two-year field experiment of rice-wheat rotation was employed to study the effects of N fertilization modes including a N fertilizer reduction and an organic manure replacement on crop yield,nutrient uptake,soil enzyme activity,and number of microbes as well as diversity of microbes.The result showed that 20% reduction of traditional N fertilizer dose of local farmers did not significantly change crop yield,N uptake,soil enzyme activity,and the number of microbes (bacteria,actinomycetes,and fungi).On the basis of 20% reduction of N fertilizer,50% replacement of N fertilizer by organic manure increased the activity of sucrose,protease,urease,and phosphatase by 46-62,27-89,33-46,and 35-74%,respectively,and the number of microbes,i.e.,bacteria,actinomycetes,and fungi by 36-150,11-153,and 43-56%,respectively.Further,organic fertilizer replacement had a Shannon's diversity index (H) of 2.18,which was higher than that of other modes of single N fertilizer application.The results suggested that reducing N fertilizer by 20% and applying organic manure in the experimental areas could effectively lower the production costs and significantly improve soil fertility and biological properties.展开更多
In order to grasp the research status of different fertilization modes in China s farmland more comprehensively, with papers in core journals of Chinese Peking University collected in CNKI database from 2003 to 2022 a...In order to grasp the research status of different fertilization modes in China s farmland more comprehensively, with papers in core journals of Chinese Peking University collected in CNKI database from 2003 to 2022 as the main research object, this paper analyzed the research status of different fertilization modes from the perspectives of annual number of published papers, published journals, keywords and highly cited papers applying the bibliometrics research method. This study provides reference for the research in this field.展开更多
Side deep placement of nitrogen plays an important role in improving rice yield and nitrogen use efficiency.Few studies have examined the effects of reducing the times of nitrogen(RTN)application and reducing the nitr...Side deep placement of nitrogen plays an important role in improving rice yield and nitrogen use efficiency.Few studies have examined the effects of reducing the times of nitrogen(RTN)application and reducing the nitrogen rate(RNR)of application on rice yield and nitrogen use efficiency under side deep placement of nitrogen in paddy fields.Therefore,a field experiment of RNT and RNR treatments was conducted with nine fertilization modes during the 2018–2019 rice growing seasons in a rice–wheat cropping system of the lower reaches of the Yangtze River,China.Rice yield and nitrogen use efficiency were investigated under side deep placement of nitrogen.We found that under the same nitrogen application rate,the yield of RTN3 increased by 9.64 and 10.18%in rice varieties NJ9108 and NJ5718,respectively,compared with the farmers’fertilizer practices(FFP).The nitrogen accumulation of RTN3 was the highest at heading stage,at 11.30 t ha^(–1)across 2018 and 2019.Under the same nitrogen application rate,the N agronomic use efficiency(NAE),N physiological efficiency(NPE)and N recovery efficiency(NRE)of RTN3 were 8.1–21.28%,8.51–41.76%and 0.28–14.52%higher than those of the other fertilization modes,respectively.RNR led to decreases in SPAD value,leaf area index(LAI),dry matter accumulation,nitrogen accumulation,and nitrogen use efficiency.These results suggest that RTN3 increased rice yield and nitrogen use efficiency under the side deep placement of nitrogen,and RNR1 could achieve the goals of saving cost and increasing resource use efficiency.Two fertilization modes RTN3 and RNR1 both could achieve the dual goals of increasing grain yield and resource use efficiency and thus are worth further application and investigation.展开更多
To achieve the purpose of reducing farm non-point source pollution, we integrated site specific nitrogen management precise irrigation, controlled drainage, and wetland eco-repair system in dike area of Taihu basin. D...To achieve the purpose of reducing farm non-point source pollution, we integrated site specific nitrogen management precise irrigation, controlled drainage, and wetland eco-repair system in dike area of Taihu basin. During investigation, it had given prominence for the water and fertilizer coupling effects of precise irrigation and site specific nutrient management, the characteristics of integration on controlled irrigation, controlled drainage and wetland ecosystem non-point source pollution control. Then the water and fertilizer integrated management mode of paddy field was put forward in Taihu basin where the water production efficiency increased to 1.64 kg. m-3, water saved 37.8%, fertilizer use efficiency raised 15,4%, yield raised 10%, and N, P load decreased 26%-72%. The modern agricultural and farmland ecosystems that control and cut down the farm non-point source pollution came into being, which can be a reference by Taihu basin to control its agricultural non-point source pollution and eutrophicated water body.展开更多
In order to solve the problem of chemical fertilizer application balance of Pu’er tea in Taiwan, the effects of different fertilization treatments on land nutrient migration and tea quality were explored, and the bas...In order to solve the problem of chemical fertilizer application balance of Pu’er tea in Taiwan, the effects of different fertilization treatments on land nutrient migration and tea quality were explored, and the basis for rational fertilization of tea gardens was provided. In this study, the effects of different fertilization treatments on tea quality indexes were studied by three different sets of fertilization treatments in tea gardens. Three sets of different fertilization treatments were set up in the experiment: conventional fertilization treatment (T1), slow-release fertilizer reduction by 20% (T2) and slow-release fertilizer reduction by 30% (T3), and the quality index of tea under different fertilization treatments, as well as the alkaline nitrogen, available phosphorus and total nitrogen and total phosphorus content in surface water of the soil were measured and analyzed. The results showed that: 1) compared with T1, the soil available phosphorus in T3 decreased by 23.5%, and the alkalinelyzed nitrogen increased by 20.5%;2) compared with T1, the total nitrogen and total phosphorus concentrations of surface water in the T2 and T3 treatments were at a low level compared with T1;compared with T1, T2 decreased by 71.4%, and T3 decreased by 68.6%;3) compared with T1, T3 was able to maintain the quality indicators of amino acids, tea polyphenols and soluble sugars in tea in a high and stable range. Therefore, under the condition of conventional fertilization and reduction, a 30% reduction in slow-release fertilizer is currently more suitable for the fertilization technology of Menghai County Tea Garden.展开更多
基金Supported by Science and Technology Planning Project of Guangdong Province(2012A020602036)
文摘[Objective] This study was conducted to screen the best fertilization mode for potted Cymbidium sinense 'Qihei'. [Method] According to the contents of the N, P and K elements in C. sinense 'Qihei' and the main fertilization modes used by producers and related literature information, the effects of 8 kinds of fertilization models on the growth of C. sinense 'Qihei' were studied. Twenty six morphologic and physiological indexes of C. sinense 'Qihei' growth were measured. [Result] Significant differences were shown on 21 indexes. [Conclusion] Based on the 26 in- dexes, the best fertilization mode included the steps of applying 14-14-14 (N-P20^- K20) slow-release fertilizer particles (8 g per bag) once in April, July and October, respectively; drip-applying 800 times of 30-10-10 water-soluble fertilizer once every half a month from April to September; and drip-applying 800 times of 15-5-30 wa- ter-soluble fertilizer (150 ml) once every half a month from October to December.
基金the National Key R&D Program of China (2016YFD0300503)the Key Research Program of Jiangsu Province, China (BE2016344)+3 种基金the National Rice Industry Technology System, China (CARS01-27)the National Nature Science Foundation of China (31701350)the Program for Scientific Elitists of Yangzhou University, Chinaa Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, China
文摘There is limited information about the influence of slow or controlled release fertilizer(S/CRF) on rice yield and quality. In this study, japonica rice cultivar Nanjing 9108 was used to study the effects of three different S/CRFs(polymer-coated urea(PCU), sulfur-coated urea(SCU), and urea formaldehyde(UF)) and two fertilization modes(both S/CRF and common urea(CU) as basal fertilizer, S/CRF as basal and CU as tillering fertilizer) on rice yield and quality. CU only was applied separately as control(CK). Results showed that, rice grain yield, chalky kernel rate, chalky area, overall chalkiness, and the content of gliadin, glutenin, and protein, all showed the trends of UF〉PCU〉SCU within the same fertilization mode, and showed the trends of S/CRF as basal and CU as tillering fertilizer〉both S/CRF and CU as basal fertilizer within the same type of S/CRF. In contrast, the contents of amylose, amylopectin, and starch, as well as taste value, and peak and hot viscosity showed trends of SCU〉PCU〉UF, and the trends of both S/CRF and CU as basal fertilizer〉S/CRF as basal and CU as tillering fertilizer. Among S/CRF treatments and fertilization modes, taste values of cooked rice were positively correlated with amylose, amylopectin, and starch contents, as well as gel consistency, peak viscosity, hot viscosity, and cool viscosity, while negatively correlated with globulin, gliadin, glutenin, and protein contents. The types of S/CRF and fertilization modes are important for improving rice yield and quality. Compared to CK, higher yield and similar quality of rice was achieved with UF as basal and CU as tillering fertilizer, and similar yield with improved appearance and eating and cooking quality of rice was achieved with either both UF and CU as basal fertilizer, or PCU as basal and CU as tillering fertilizer.
基金Project supported by the National Natural Science Funds for Distinguished Young Scholar (No. 40325001) the National Key Basic Research and Development Program of China (No. 2002CB410805)the Natural Science Foundation of Jiangsu Province (No. BK2005220).
文摘Soll samples with three fertilization treatments (no fertilizer, corn straw and farm manure) collected from a Lou soil (Eum-orthic Anthrosol classfied using Chinese Soil Taxonomy) in northwestern China were analysed for residual levels and their characteristics of organochlorine pesticides (α-HCH, β-HCH,γ-HCH, δ-HCH, HCB, o, p'-DDT, p, p'-DDT, o, p'- DDE, p,p'-DDE, p,p'-DDD, α-endosulfan, dieldrin and endrin). Organochlorine pesticides (OCPs) were detected in all soil samples except δ-HCH and their total concentrations ranged from 159.31 ± 9.00 to 179.77 ± 2.58 ng g^-1 with an order of HCHs 〉 DDTs 〉 (dieldrin + endrin) 〉 HCB 〉 α-endosulfan. Among all the compounds, γ-HCH had the highest concentration followed by p, p'-DDE. The residual levels of HCH isomers and DDT as well as their metabolites in soil with different fertilization treatments were in the order of γ-HCH 〉β-HCH ≈ α-HCH 〉 δ-HCH and p,p’-DDE 〉 p, p’-DDT 〉 o,p'-DDT 〉 p, p'-DDD ≈ o, p'-DDE, respectively. DDE/DDT ratios ranged from 1.59 ± 0.13 to 3.35± 0.16 and endrin/dieldrin ratios from 1.40 ±0.06 to 9.20± 4.05, both indicating no new occurrence of these pesticides in these soils, while α-HCH/γ-HCH ratios of 0.04 indicated a new input of lindane (almost pure γ-HCH) in the past several years. The farm manure treatments showed lower DDT residues than samples without fertilizer. Also addition of corn straw and farm manure increased soil organic matter content and decreased the soil pH which could retard the degradation of DDT in the soil.
基金supported by the National Basic Research Program of China (973 Program,2007CB109308)the National High-Tech R&D Program of China (2007AA06Z332)a special grant of Application of Nuclear Techniques in Agriculture from the Ministry of Agriculture of China (200803034)
文摘Rational application of nitrogen (N) fertilizers is an important measure to raise N fertilizer recovery rate and reduce N loss.A two-year field experiment of rice-wheat rotation was employed to study the effects of N fertilization modes including a N fertilizer reduction and an organic manure replacement on crop yield,nutrient uptake,soil enzyme activity,and number of microbes as well as diversity of microbes.The result showed that 20% reduction of traditional N fertilizer dose of local farmers did not significantly change crop yield,N uptake,soil enzyme activity,and the number of microbes (bacteria,actinomycetes,and fungi).On the basis of 20% reduction of N fertilizer,50% replacement of N fertilizer by organic manure increased the activity of sucrose,protease,urease,and phosphatase by 46-62,27-89,33-46,and 35-74%,respectively,and the number of microbes,i.e.,bacteria,actinomycetes,and fungi by 36-150,11-153,and 43-56%,respectively.Further,organic fertilizer replacement had a Shannon's diversity index (H) of 2.18,which was higher than that of other modes of single N fertilizer application.The results suggested that reducing N fertilizer by 20% and applying organic manure in the experimental areas could effectively lower the production costs and significantly improve soil fertility and biological properties.
基金Supported by Undergraduate Training Program for Innovation and Entrepreneurship of Guizhou Province(S202310664011)Natural Science Research Project of Guizhou Provincial Department of Education(QJJ[2022]067,QJJ[2023]043)Teaching Content and Curriculum System Reform Project of Colleges and Universities in Guizhou Province(GZJG20220776)。
文摘In order to grasp the research status of different fertilization modes in China s farmland more comprehensively, with papers in core journals of Chinese Peking University collected in CNKI database from 2003 to 2022 as the main research object, this paper analyzed the research status of different fertilization modes from the perspectives of annual number of published papers, published journals, keywords and highly cited papers applying the bibliometrics research method. This study provides reference for the research in this field.
基金the National Key Research and Development Program of China(2018YFD0300802 and 2016YFD0200805)the Key Research Program of Jiangsu Province,China(BE2017343 and BE2018362)。
文摘Side deep placement of nitrogen plays an important role in improving rice yield and nitrogen use efficiency.Few studies have examined the effects of reducing the times of nitrogen(RTN)application and reducing the nitrogen rate(RNR)of application on rice yield and nitrogen use efficiency under side deep placement of nitrogen in paddy fields.Therefore,a field experiment of RNT and RNR treatments was conducted with nine fertilization modes during the 2018–2019 rice growing seasons in a rice–wheat cropping system of the lower reaches of the Yangtze River,China.Rice yield and nitrogen use efficiency were investigated under side deep placement of nitrogen.We found that under the same nitrogen application rate,the yield of RTN3 increased by 9.64 and 10.18%in rice varieties NJ9108 and NJ5718,respectively,compared with the farmers’fertilizer practices(FFP).The nitrogen accumulation of RTN3 was the highest at heading stage,at 11.30 t ha^(–1)across 2018 and 2019.Under the same nitrogen application rate,the N agronomic use efficiency(NAE),N physiological efficiency(NPE)and N recovery efficiency(NRE)of RTN3 were 8.1–21.28%,8.51–41.76%and 0.28–14.52%higher than those of the other fertilization modes,respectively.RNR led to decreases in SPAD value,leaf area index(LAI),dry matter accumulation,nitrogen accumulation,and nitrogen use efficiency.These results suggest that RTN3 increased rice yield and nitrogen use efficiency under the side deep placement of nitrogen,and RNR1 could achieve the goals of saving cost and increasing resource use efficiency.Two fertilization modes RTN3 and RNR1 both could achieve the dual goals of increasing grain yield and resource use efficiency and thus are worth further application and investigation.
基金Supported by NSFC (50839002)Society Development Program of Jiangsu Province (BS2007139)
文摘To achieve the purpose of reducing farm non-point source pollution, we integrated site specific nitrogen management precise irrigation, controlled drainage, and wetland eco-repair system in dike area of Taihu basin. During investigation, it had given prominence for the water and fertilizer coupling effects of precise irrigation and site specific nutrient management, the characteristics of integration on controlled irrigation, controlled drainage and wetland ecosystem non-point source pollution control. Then the water and fertilizer integrated management mode of paddy field was put forward in Taihu basin where the water production efficiency increased to 1.64 kg. m-3, water saved 37.8%, fertilizer use efficiency raised 15,4%, yield raised 10%, and N, P load decreased 26%-72%. The modern agricultural and farmland ecosystems that control and cut down the farm non-point source pollution came into being, which can be a reference by Taihu basin to control its agricultural non-point source pollution and eutrophicated water body.
文摘In order to solve the problem of chemical fertilizer application balance of Pu’er tea in Taiwan, the effects of different fertilization treatments on land nutrient migration and tea quality were explored, and the basis for rational fertilization of tea gardens was provided. In this study, the effects of different fertilization treatments on tea quality indexes were studied by three different sets of fertilization treatments in tea gardens. Three sets of different fertilization treatments were set up in the experiment: conventional fertilization treatment (T1), slow-release fertilizer reduction by 20% (T2) and slow-release fertilizer reduction by 30% (T3), and the quality index of tea under different fertilization treatments, as well as the alkaline nitrogen, available phosphorus and total nitrogen and total phosphorus content in surface water of the soil were measured and analyzed. The results showed that: 1) compared with T1, the soil available phosphorus in T3 decreased by 23.5%, and the alkalinelyzed nitrogen increased by 20.5%;2) compared with T1, the total nitrogen and total phosphorus concentrations of surface water in the T2 and T3 treatments were at a low level compared with T1;compared with T1, T2 decreased by 71.4%, and T3 decreased by 68.6%;3) compared with T1, T3 was able to maintain the quality indicators of amino acids, tea polyphenols and soluble sugars in tea in a high and stable range. Therefore, under the condition of conventional fertilization and reduction, a 30% reduction in slow-release fertilizer is currently more suitable for the fertilization technology of Menghai County Tea Garden.