期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Optimization of fertilizer performances in long-term garlic cropping soils 被引量:1
1
作者 Tianqi WEI Hongmei ZHOU +3 位作者 Huayang HONG Yanyun REN Qin LIU Yanhua SU 《Pedosphere》 SCIE CAS CSCD 2024年第3期577-589,共13页
Continuous cropping is a common pattern of modern agriculture that takes regional advantages for crop yield profits.Along the progress of mono-cropping continuously supported by intensive fertilizer inputs,such a crop... Continuous cropping is a common pattern of modern agriculture that takes regional advantages for crop yield profits.Along the progress of mono-cropping continuously supported by intensive fertilizer inputs,such a cropping pattern often undergoes serious problems with low fertilizer use efficiencies and unsustainable crop production.In this study,we dealt with a>25-year continuous garlic cropping system as an example for a problem-solving investigation.These garlic cropping soils underwent problems characterized by loss of soil organic matter,dramatic retention of NH_(4)^(+)-N,and excess accumulation of phosphate and potash chemicals.Through hydroponic simulations,we revealed that the presence of NH_(4)^(+)-N inhibited the root uptake of NO_(3)^(-)-N and K by 68% and 88%,respectively.Despite the traditionally emphasized importance of K,we observed the negative effect of high K on the growth of garlic roots.Further field experiments demonstrated that P and K applications can be reduced by 60% and 50%,respectively,without loss of yield.We thus developed a high-performance fertilization strategy by integrating a recomposed NPK fertilizer formulation to reduce unnecessary P and K inputs,a supplementary application of long-lasting C of woody peat to compensate for the soil C loss,and a foliar K approach to strengthen the stomatal function improvement with K.This strategy allowed a 15% increase of garlic yield and a seasonal soil C profit of ca.1.8 Mg ha^(-1)even at ca.30% lower fertilizer cost.This study would be helpful in managing garlic fertilization and developing compound fertilizers,with broader significance for other long-term cropping soils. 展开更多
关键词 fertilization strategy fertilizer input field validation hydroponic simulation optimized fertilization soil nutrient balance yield profit
原文传递
Anammox bacterial abundance and biodiversity in greenhouse vegetable soil are influenced by high nitrate content 被引量:2
2
作者 Hongyi QIN Huan DENG +1 位作者 Cheng HAN Wenhui ZHONG 《Pedosphere》 SCIE CAS CSCD 2020年第3期343-351,共9页
The anaerobic ammonium oxidizing(anammox) process has been found to play an important role in terrestrial ecosystems in recent years. However,the diversity and abundance of anammox bacteria in nitrogen(N)-rich agricul... The anaerobic ammonium oxidizing(anammox) process has been found to play an important role in terrestrial ecosystems in recent years. However,the diversity and abundance of anammox bacteria in nitrogen(N)-rich agricultural soils under high fertilizer greenhouse conditions are still unclear. Two greenhouse fields with different N fertilizer input levels were chosen, and their soil profiles were studied with molecular technologies, including quantitative polymerase chain reaction assay, a clone library, and phylogenetic analysis based on hzsB(encoding anammox hydrazine synthase β-subunit) gene. Molecular analyses suggested that anammox bacteria were at their highest density at 10–20 cm soil depth, and that the anammox bacterial abundance was significantly lower at high N than at low N. Candidatus Brocadia was the sole anammox bacterial genus throughout the soil depth profiles. The highest diversity of anammox bacteria was found at 30–40 cm soil depth, and different phylotypic clusters of Candidatus Brocadia were associated with specific soil environmental factors, such as nitrates, soil depth, and total N. Correlation analyses and redundancy analyses confirmed that high nitrate content associated with high N fertilizer input had a significant negative influence on the abundance and biodiversity of anammox bacteria. These results imply that excessive use of N fertilizer would affect arid land soil N loss to the atmosphere by the anammox pathway. 展开更多
关键词 anammox pathway community structure fertilizer input level greenhouse soil hydrazine gene nitrogen fertilizer nitrogen pollution soil degradation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部