期刊文献+
共找到218,453篇文章
< 1 2 250 >
每页显示 20 50 100
A Few-Shot Learning-Based Automatic Modulation Classification Method for Internet of Things
1
作者 Aer Sileng Qi Chenhao 《China Communications》 SCIE CSCD 2024年第8期18-29,共12页
Due to the limited computational capability and the diversity of the Internet of Things devices working in different environment,we consider fewshot learning-based automatic modulation classification(AMC)to improve it... Due to the limited computational capability and the diversity of the Internet of Things devices working in different environment,we consider fewshot learning-based automatic modulation classification(AMC)to improve its reliability.A data enhancement module(DEM)is designed by a convolutional layer to supplement frequency-domain information as well as providing nonlinear mapping that is beneficial for AMC.Multimodal network is designed to have multiple residual blocks,where each residual block has multiple convolutional kernels of different sizes for diverse feature extraction.Moreover,a deep supervised loss function is designed to supervise all parts of the network including the hidden layers and the DEM.Since different model may output different results,cooperative classifier is designed to avoid the randomness of single model and improve the reliability.Simulation results show that this few-shot learning-based AMC method can significantly improve the AMC accuracy compared to the existing methods. 展开更多
关键词 automatic modulation classification(AMC) deep learning(DL) few-shot learning Internet of Things(IoT)
下载PDF
Automated Classification of Inherited Retinal Diseases in Optical Coherence Tomography Images Using Few-shot Learning
2
作者 ZHAO Qi MAI Si Wei +7 位作者 LI Qian HUANG Guan Chong GAO Ming Chen YANG Wen Li WANG Ge MA Ya LI Lei PENG Xiao Yan 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2023年第5期431-440,共10页
Objective To develop a few-shot learning(FSL) approach for classifying optical coherence tomography(OCT) images in patients with inherited retinal disorders(IRDs).Methods In this study, an FSL model based on a student... Objective To develop a few-shot learning(FSL) approach for classifying optical coherence tomography(OCT) images in patients with inherited retinal disorders(IRDs).Methods In this study, an FSL model based on a student–teacher learning framework was designed to classify images. 2,317 images from 189 participants were included. Of these, 1,126 images revealed IRDs, 533 were normal samples, and 658 were control samples.Results The FSL model achieved a total accuracy of 0.974–0.983, total sensitivity of 0.934–0.957, total specificity of 0.984–0.990, and total F1 score of 0.935–0.957, which were superior to the total accuracy of the baseline model of 0.943–0.954, total sensitivity of 0.866–0.886, total specificity of 0.962–0.971,and total F1 score of 0.859–0.885. The performance of most subclassifications also exhibited advantages. Moreover, the FSL model had a higher area under curves(AUC) of the receiver operating characteristic(ROC) curves in most subclassifications.Conclusion This study demonstrates the effective use of the FSL model for the classification of OCT images from patients with IRDs, normal, and control participants with a smaller volume of data. The general principle and similar network architectures can also be applied to other retinal diseases with a low prevalence. 展开更多
关键词 few-shot learning Student-teacher learning Knowledge distillation Transfer learning Optical coherence tomography Retinal degeneration Inherited retinal diseases
下载PDF
SW-Net: A novel few-shot learning approach for disease subtype prediction
3
作者 YUHAN JI YONG LIANG +1 位作者 ZIYI YANG NING AI 《BIOCELL》 SCIE 2023年第3期569-579,共11页
Few-shot learning is becoming more and more popular in many fields,especially in the computer vision field.This inspires us to introduce few-shot learning to the genomic field,which faces a typical few-shot problem be... Few-shot learning is becoming more and more popular in many fields,especially in the computer vision field.This inspires us to introduce few-shot learning to the genomic field,which faces a typical few-shot problem because some tasks only have a limited number of samples with high-dimensions.The goal of this study was to investigate the few-shot disease sub-type prediction problem and identify patient subgroups through training on small data.Accurate disease subtype classification allows clinicians to efficiently deliver investigations and interventions in clinical practice.We propose the SW-Net,which simulates the clinical process of extracting the shared knowledge from a range of interrelated tasks and generalizes it to unseen data.Our model is built upon a simple baseline,and we modified it for genomic data.Supportbased initialization for the classifier and transductive fine-tuning techniques were applied in our model to improve prediction accuracy,and an Entropy regularization term on the query set was appended to reduce over-fitting.Moreover,to address the high dimension and high noise issue,we future extended a feature selection module to adaptively select important features and a sample weighting module to prioritize high-confidence samples.Experiments on simulated data and The Cancer Genome Atlas meta-dataset show that our new baseline model gets higher prediction accuracy compared to other competing algorithms. 展开更多
关键词 few-shot learning Disease sub-type classification Feature selection Deep learning META-learning
下载PDF
Dynamic Analogical Association Algorithm Based on Manifold Matching for Few-Shot Learning
4
作者 Yuncong Peng Xiaolin Qin +2 位作者 Qianlei Wang Boyi Fu Yongxiang Gu 《Computer Systems Science & Engineering》 SCIE EI 2023年第7期1233-1247,共15页
At present,deep learning has been well applied in many fields.However,due to the high complexity of hypothesis space,numerous training samples are usually required to ensure the reliability of minimizing experience ri... At present,deep learning has been well applied in many fields.However,due to the high complexity of hypothesis space,numerous training samples are usually required to ensure the reliability of minimizing experience risk.Therefore,training a classifier with a small number of training examples is a challenging task.From a biological point of view,based on the assumption that rich prior knowledge and analogical association should enable human beings to quickly distinguish novel things from a few or even one example,we proposed a dynamic analogical association algorithm to make the model use only a few labeled samples for classification.To be specific,the algorithm search for knowledge structures similar to existing tasks in prior knowledge based on manifold matching,and combine sampling distributions to generate offsets instead of two sample points,thereby ensuring high confidence and significant contribution to the classification.The comparative results on two common benchmark datasets substantiate the superiority of the proposed method compared to existing data generation approaches for few-shot learning,and the effectiveness of the algorithm has been proved through ablation experiments. 展开更多
关键词 few-shot learning manifold matching analogical association data generation
下载PDF
Leveraging on few-shot learning for tire pattern classification in forensics
5
作者 Lijun Jiang Syed Ariff Syed Hesham +1 位作者 Keng Pang Lim Changyun Wen 《Journal of Automation and Intelligence》 2023年第3期146-151,共6页
This paper presents a novel approach for tire-pattern classification,aimed at conducting forensic analysis on tire marks discovered at crime scenes.The classification model proposed in this study accounts for the intr... This paper presents a novel approach for tire-pattern classification,aimed at conducting forensic analysis on tire marks discovered at crime scenes.The classification model proposed in this study accounts for the intricate and dynamic nature of tire prints found in real-world scenarios,including accident sites.To address this complexity,the classifier model was developed to harness the meta-learning capabilities of few-shot learning algorithms(learning-to-learn).The model is meticulously designed and optimized to effectively classify both tire patterns exhibited on wheels and tire-indentation marks visible on surfaces due to friction.This is achieved by employing a semantic segmentation model to extract the tire pattern marks within the image.These marks are subsequently used as a mask channel,combined with the original image,and fed into the classifier to perform classification.Overall,The proposed model follows a three-step process:(i)the Bilateral Segmentation Network is employed to derive the semantic segmentation of the tire pattern within a given image.(ii)utilizing the semantic image in conjunction with the original image,the model learns and clusters groups to generate vectors that define the relative position of the image in the test set.(iii)the model performs predictions based on these learned features.Empirical verification demonstrates usage of semantic model to extract the tire patterns before performing classification increases the overall accuracy of classification by∼4%. 展开更多
关键词 META-learning few-shot classification Semantic segmentation
下载PDF
Few-Shot Learning for Discovering Anomalous Behaviors in Edge Networks 被引量:2
6
作者 Merna Gamal Hala M.Abbas +2 位作者 Nour Moustafa Elena Sitnikova Rowayda A.Sadek 《Computers, Materials & Continua》 SCIE EI 2021年第11期1823-1837,共15页
Intrusion Detection Systems(IDSs)have a great interest these days to discover complex attack events and protect the critical infrastructures of the Internet of Things(IoT)networks.Existing IDSs based on shallow and de... Intrusion Detection Systems(IDSs)have a great interest these days to discover complex attack events and protect the critical infrastructures of the Internet of Things(IoT)networks.Existing IDSs based on shallow and deep network architectures demand high computational resources and high volumes of data to establish an adaptive detection engine that discovers new families of attacks from the edge of IoT networks.However,attackers exploit network gateways at the edge using new attacking scenarios(i.e.,zero-day attacks),such as ransomware and Distributed Denial of Service(DDoS)attacks.This paper proposes new IDS based on Few-Shot Deep Learning,named CNN-IDS,which can automatically identify zero-day attacks from the edge of a network and protect its IoT systems.The proposed system comprises two-methodological stages:1)a filtered Information Gain method is to select the most useful features from network data,and 2)one-dimensional Convolutional Neural Network(CNN)algorithm is to recognize new attack types from a network’s edge.The proposed model is trained and validated using two datasets of the UNSW-NB15 and Bot-IoT.The experimental results showed that it enhances about a 3%detection rate and around a 3%–4%falsepositive rate with the UNSW-NB15 dataset and about an 8%detection rate using the BoT-IoT dataset. 展开更多
关键词 Convolution neural network information gain few-shot learning IoT edge computing
下载PDF
Task-adaptation graph network for few-shot learning
7
作者 ZHAO Wencang LI Ming QIN Wenqian 《High Technology Letters》 EI CAS 2022年第2期164-171,共8页
Numerous meta-learning methods focus on the few-shot learning issue,yet most of them assume that various tasks have a shared embedding space,so the generalization ability of the trained model is limited.In order to so... Numerous meta-learning methods focus on the few-shot learning issue,yet most of them assume that various tasks have a shared embedding space,so the generalization ability of the trained model is limited.In order to solve the aforementioned problem,a task-adaptive meta-learning method based on graph neural network(TAGN) is proposed in this paper,where the characterization ability of the original feature extraction network is ameliorated and the classification accuracy is remarkably improved.Firstly,a task-adaptation module based on the self-attention mechanism is employed,where the generalization ability of the model is enhanced on the new task.Secondly,images are classified in non-Euclidean domain,where the disadvantages of poor adaptability of the traditional distance function are overcome.A large number of experiments are conducted and the results show that the proposed methodology has a better performance than traditional task-independent classification methods on two real-word datasets. 展开更多
关键词 META-learning image classification graph neural network(GNN) few-shot learning
下载PDF
Menu Text Recognition of Few-shot Learning
8
作者 Xiaoyu Tian Zhenzhen +3 位作者 Xin Zihao Liu Suolan Chen Fuhua Wang Hongyuan 《Journal of New Media》 2022年第3期137-143,共7页
Recent advances in OCR show that end-to-end(E2E)training pipelines including detection and identification can achieve the best results.However,many existing methods usually focus on case insensitive English characters... Recent advances in OCR show that end-to-end(E2E)training pipelines including detection and identification can achieve the best results.However,many existing methods usually focus on case insensitive English characters.In this paper,we apply an E2E approach,the multiplex multilingual mask TextSpotter,which performs script recognition at the word level and uses different recognition headers to process different scripts while maintaining uniform loss,thus optimizing script recognition and multiple recognition headers simultaneously.Experiments show that this method is superior to the single-head model with similar number of parameters in endto-end identification tasks. 展开更多
关键词 Text recognition script identification few-shot learning multiple languages
下载PDF
Few-shot working condition recognition of a sucker-rod pumping system based on a 4-dimensional time-frequency signature and meta-learning convolutional shrinkage neural network 被引量:1
9
作者 Yun-Peng He Chuan-Zhi Zang +4 位作者 Peng Zeng Ming-Xin Wang Qing-Wei Dong Guang-Xi Wan Xiao-Ting Dong 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期1142-1154,共13页
The accurate and intelligent identification of the working conditions of a sucker-rod pumping system is necessary. As onshore oil extraction gradually enters its mid-to late-stage, the cost required to train a deep le... The accurate and intelligent identification of the working conditions of a sucker-rod pumping system is necessary. As onshore oil extraction gradually enters its mid-to late-stage, the cost required to train a deep learning working condition recognition model for pumping wells by obtaining enough new working condition samples is expensive. For the few-shot problem and large calculation issues of new working conditions of oil wells, a working condition recognition method for pumping unit wells based on a 4-dimensional time-frequency signature (4D-TFS) and meta-learning convolutional shrinkage neural network (ML-CSNN) is proposed. First, the measured pumping unit well workup data are converted into 4D-TFS data, and the initial feature extraction task is performed while compressing the data. Subsequently, a convolutional shrinkage neural network (CSNN) with a specific structure that can ablate low-frequency features is designed to extract working conditions features. Finally, a meta-learning fine-tuning framework for learning the network parameters that are susceptible to task changes is merged into the CSNN to solve the few-shot issue. The results of the experiments demonstrate that the trained ML-CSNN has good recognition accuracy and generalization ability for few-shot working condition recognition. More specifically, in the case of lower computational complexity, only few-shot samples are needed to fine-tune the network parameters, and the model can be quickly adapted to new classes of well conditions. 展开更多
关键词 few-shot learning Indicator diagram META-learning Soft thresholding Sucker-rod pumping system Time–frequency signature Working condition recognition
下载PDF
Recent advances of few-shot learning methods and applications
10
作者 WANG JianYuan LIU KeXin +2 位作者 ZHANG YuCheng LENG Biao LU JinHu 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2023年第4期920-944,共25页
The rapid development of deep learning provides great convenience for production and life.However,the massive labels required for training models limits further development.Few-shot learning which can obtain a high-pe... The rapid development of deep learning provides great convenience for production and life.However,the massive labels required for training models limits further development.Few-shot learning which can obtain a high-performance model by learning few samples in new tasks,providing a solution for many scenarios that lack samples.This paper summarizes few-shot learning algorithms in recent years and proposes a taxonomy.Firstly,we introduce the few-shot learning task and its significance.Secondly,according to different implementation strategies,few-shot learning methods in recent years are divided into five categories,including data augmentation-based methods,metric learning-based methods,parameter optimization-based methods,external memory-based methods,and other approaches.Next,We investigate the application of few-shot learning methods and summarize them from three directions,including computer vision,human-machine language interaction,and robot actions.Finally,we analyze the existing few-shot learning methods by comparing evaluation results on mini Image Net,and summarize the whole paper. 展开更多
关键词 few-shot learning deep learning meta learning data augmentation parameter optimization
原文传递
A New Diagnosis Method with Few-shot Learning Based on a Class-rebalance Strategy for Scarce Faults in Industrial Processes
11
作者 Xinyao Xu De Xu Fangbo Qin 《Machine Intelligence Research》 EI CSCD 2023年第4期583-594,共12页
For industrial processes, new scarce faults are usually judged by experts. The lack of instances for these faults causes a severe data imbalance problem for a diagnosis model and leads to low performance. In this arti... For industrial processes, new scarce faults are usually judged by experts. The lack of instances for these faults causes a severe data imbalance problem for a diagnosis model and leads to low performance. In this article, a new diagnosis method with few-shot learning based on a class-rebalance strategy is proposed to handle the problem. The proposed method is designed to transform instances of the different faults into a feature embedding space. In this way, the fault features can be transformed into separate feature clusters. The fault representations are calculated as the centers of feature clusters. The representations of new faults can also be effectively calculated with few support instances. Therefore, fault diagnosis can be achieved by estimating feature similarity between instances and faults. A cluster loss function is designed to enhance the feature clustering performance. Also, a class-rebalance strategy with data augmentation is designed to imitate potential faults with different reasons and degrees of severity to improve the model’s generalizability. It improves the diagnosis performance of the proposed method. Simulations of fault diagnosis with the proposed method were performed on the Tennessee-Eastman benchmark. The proposed method achieved average diagnosis accuracies ranging from 81.8% to 94.7% for the eight selected faults for the simulation settings of support instances ranging from 3 to 50. The simulation results verify the effectiveness of the proposed method. 展开更多
关键词 Data augmentation feature clustering class-rebalance strategy few-shot learning fault diagnosis
原文传递
Teachers cooperation:team-knowledge distillation for multiple cross-domain few-shot learning
12
作者 Zhong JI Jingwei NI +1 位作者 Xiyao LIU Yanwei PANG 《Frontiers of Computer Science》 SCIE EI CSCD 2023年第2期91-99,共9页
Although few-shot learning(FSL)has achieved great progress,it is still an enormous challenge especially when the source and target set are from different domains,which is also known as cross-domain few-shot learning(C... Although few-shot learning(FSL)has achieved great progress,it is still an enormous challenge especially when the source and target set are from different domains,which is also known as cross-domain few-shot learning(CD-FSL).Utilizing more source domain data is an effective way to improve the performance of CD-FSL.However,knowledge from different source domains may entangle and confuse with each other,which hurts the performance on the target domain.Therefore,we propose team-knowledge distllation networks(TKD-Net)to tackle this problem,which explores a strategy to help the cooperation of multiple teachers.Specifically,we distill knowledge from the cooperation of teacher networks to a single student network in a meta-learning framework.It incorporates task-oriented knowledge distillation and multiple cooperation among teachers to train an efficient student with better generalization ability on unseen tasks.Moreover,our TKD-Net employs both response-based knowledge and relation-based knowledge to transfer more comprehensive and effective knowledge.Extensive experimental results on four fine-grained datasets have demonstrated the effectiveness and superiority of our proposed TKD-Net approach. 展开更多
关键词 cross-domain few-shot learning meta-learning knowledge distillation multiple teachers
原文传递
Filter Bank Networks for Few-Shot Class-Incremental Learning
13
作者 Yanzhao Zhou Binghao Liu +1 位作者 Yiran Liu Jianbin Jiao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第10期647-668,共22页
Deep Convolution Neural Networks(DCNNs)can capture discriminative features from large datasets.However,how to incrementally learn new samples without forgetting old ones and recognize novel classes that arise in the d... Deep Convolution Neural Networks(DCNNs)can capture discriminative features from large datasets.However,how to incrementally learn new samples without forgetting old ones and recognize novel classes that arise in the dynamically changing world,e.g.,classifying newly discovered fish species,remains an open problem.We address an even more challenging and realistic setting of this problem where new class samples are insufficient,i.e.,Few-Shot Class-Incremental Learning(FSCIL).Current FSCIL methods augment the training data to alleviate the overfitting of novel classes.By contrast,we propose Filter Bank Networks(FBNs)that augment the learnable filters to capture fine-detailed features for adapting to future new classes.In the forward pass,FBNs augment each convolutional filter to a virtual filter bank containing the canonical one,i.e.,itself,and multiple transformed versions.During back-propagation,FBNs explicitly stimulate fine-detailed features to emerge and collectively align all gradients of each filter bank to learn the canonical one.FBNs capture pattern variants that do not yet exist in the pretraining session,thus making it easy to incorporate new classes in the incremental learning phase.Moreover,FBNs introduce model-level prior knowledge to efficiently utilize the limited few-shot data.Extensive experiments on MNIST,CIFAR100,CUB200,andMini-ImageNet datasets show that FBNs consistently outperformthe baseline by a significantmargin,reporting new state-of-the-art FSCIL results.In addition,we contribute a challenging FSCIL benchmark,Fishshot1K,which contains 8261 underwater images covering 1000 ocean fish species.The code is included in the supplementary materials. 展开更多
关键词 Deep learning incremental learning few-shot learning Filter Bank Networks
下载PDF
Meta-BN Net for few-shot learning
14
作者 Wei GAO Mingwen SHAO +1 位作者 Jun SHU Xinkai ZHUANG 《Frontiers of Computer Science》 SCIE EI CSCD 2023年第1期73-80,共8页
In this paper, we propose a lightweight network with an adaptive batch normalization module, called Meta-BN Net, for few-shot classification. Unlike existing few-shot learning methods, which consist of complex models ... In this paper, we propose a lightweight network with an adaptive batch normalization module, called Meta-BN Net, for few-shot classification. Unlike existing few-shot learning methods, which consist of complex models or algorithms, our approach extends batch normalization, an essential part of current deep neural network training, whose potential has not been fully explored. In particular, a meta-module is introduced to learn to generate more powerful affine transformation parameters, known as and , in the batch normalization layer adaptively so that the representation ability of batch normalization can be activated. The experimental results on miniImageNet demonstrate that Meta-BN Net not only outperforms the baseline methods at a large margin but also is competitive with recent state-of-the-art few-shot learning methods. We also conduct experiments on Fewshot-CIFAR100 and CUB datasets, and the results show that our approach is effective to boost the performance of weak baseline networks. We believe our findings can motivate to explore the undiscovered capacity of base components in a neural network as well as more efficient few-shot learning methods. 展开更多
关键词 META-learning few-shot learning batch normalization
原文传递
A Novel Deep Model with Meta-Learning for Rolling Bearing Few-Shot Fault Diagnosis
15
作者 Xiaoxia Liang Ming Zhang +3 位作者 Guojin Feng Yuchun Xu Dong Zhen Fengshou Gu 《Journal of Dynamics, Monitoring and Diagnostics》 2023年第2期102-114,共13页
Machine learning,especially deep learning,has been highly successful in data-intensive applications;however,the performance of these models will drop significantly when the amount of the training data amount does not ... Machine learning,especially deep learning,has been highly successful in data-intensive applications;however,the performance of these models will drop significantly when the amount of the training data amount does not meet the requirement.This leads to the so-called few-shot learning(FSL)problem,which requires the model rapidly generalize to new tasks that containing only a few labeled samples.In this paper,we proposed a new deep model,called deep convolutional meta-learning networks,to address the low performance of generalization under limited data for bearing fault diagnosis.The essential of our approach is to learn a base model from the multiple learning tasks using a support dataset and finetune the learnt parameters using few-shot tasks before it can adapt to the new learning task based on limited training data.The proposed method was compared to several FSL methods,including methods with and without pre-training the embedding mapping,and methods with finetuning the classifier or the whole model by utilizing the few-shot data from the target domain.The comparisons are carried out on 1-shot and 10-shot tasks using the Case Western Reserve University bearing dataset and a cylindrical roller bearing dataset.The experimental result illustrates that our method has good performance on the bearing fault diagnosis across various few-shot conditions.In addition,we found that the pretraining process does not always improve the prediction accuracy. 展开更多
关键词 BEARING deep model fault diagnosis few-shot learning META-learning
下载PDF
基于改进Q-Learning的移动机器人路径规划算法
16
作者 王立勇 王弘轩 +2 位作者 苏清华 王绅同 张鹏博 《电子测量技术》 北大核心 2024年第9期85-92,共8页
随着移动机器人在生产生活中的深入应用,其路径规划能力也需要向快速性和环境适应性兼备发展。为解决现有移动机器人使用强化学习方法进行路径规划时存在的探索前期容易陷入局部最优、反复搜索同一区域,探索后期收敛率低、收敛速度慢的... 随着移动机器人在生产生活中的深入应用,其路径规划能力也需要向快速性和环境适应性兼备发展。为解决现有移动机器人使用强化学习方法进行路径规划时存在的探索前期容易陷入局部最优、反复搜索同一区域,探索后期收敛率低、收敛速度慢的问题,本研究提出一种改进的Q-Learning算法。该算法改进Q矩阵赋值方法,使迭代前期探索过程具有指向性,并降低碰撞的情况;改进Q矩阵迭代方法,使Q矩阵更新具有前瞻性,避免在一个小区域中反复探索;改进随机探索策略,在迭代前期全面利用环境信息,后期向目标点靠近。在不同栅格地图仿真验证结果表明,本文算法在Q-Learning算法的基础上,通过上述改进降低探索过程中的路径长度、减少抖动并提高收敛的速度,具有更高的计算效率。 展开更多
关键词 路径规划 强化学习 移动机器人 Q-learning算法 ε-decreasing策略
下载PDF
基于Q-Learning的航空器滑行路径规划研究
17
作者 王兴隆 王睿峰 《中国民航大学学报》 CAS 2024年第3期28-33,共6页
针对传统算法规划航空器滑行路径准确度低、不能根据整体场面运行情况进行路径规划的问题,提出一种基于Q-Learning的路径规划方法。通过对机场飞行区网络结构模型和强化学习的仿真环境分析,设置了状态空间和动作空间,并根据路径的合规... 针对传统算法规划航空器滑行路径准确度低、不能根据整体场面运行情况进行路径规划的问题,提出一种基于Q-Learning的路径规划方法。通过对机场飞行区网络结构模型和强化学习的仿真环境分析,设置了状态空间和动作空间,并根据路径的合规性和合理性设定了奖励函数,将路径合理性评价值设置为滑行路径长度与飞行区平均滑行时间乘积的倒数。最后,分析了动作选择策略参数对路径规划模型的影响。结果表明,与A*算法和Floyd算法相比,基于Q-Learning的路径规划在滑行距离最短的同时,避开了相对繁忙的区域,路径合理性评价值高。 展开更多
关键词 滑行路径规划 机场飞行区 强化学习 Q-learning
下载PDF
Machine learning applications in stroke medicine:advancements,challenges,and future prospectives 被引量:3
18
作者 Mario Daidone Sergio Ferrantelli Antonino Tuttolomondo 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期769-773,共5页
Stroke is a leading cause of disability and mortality worldwide,necessitating the development of advanced technologies to improve its diagnosis,treatment,and patient outcomes.In recent years,machine learning technique... Stroke is a leading cause of disability and mortality worldwide,necessitating the development of advanced technologies to improve its diagnosis,treatment,and patient outcomes.In recent years,machine learning techniques have emerged as promising tools in stroke medicine,enabling efficient analysis of large-scale datasets and facilitating personalized and precision medicine approaches.This abstract provides a comprehensive overview of machine learning’s applications,challenges,and future directions in stroke medicine.Recently introduced machine learning algorithms have been extensively employed in all the fields of stroke medicine.Machine learning models have demonstrated remarkable accuracy in imaging analysis,diagnosing stroke subtypes,risk stratifications,guiding medical treatment,and predicting patient prognosis.Despite the tremendous potential of machine learning in stroke medicine,several challenges must be addressed.These include the need for standardized and interoperable data collection,robust model validation and generalization,and the ethical considerations surrounding privacy and bias.In addition,integrating machine learning models into clinical workflows and establishing regulatory frameworks are critical for ensuring their widespread adoption and impact in routine stroke care.Machine learning promises to revolutionize stroke medicine by enabling precise diagnosis,tailored treatment selection,and improved prognostication.Continued research and collaboration among clinicians,researchers,and technologists are essential for overcoming challenges and realizing the full potential of machine learning in stroke care,ultimately leading to enhanced patient outcomes and quality of life.This review aims to summarize all the current implications of machine learning in stroke diagnosis,treatment,and prognostic evaluation.At the same time,another purpose of this paper is to explore all the future perspectives these techniques can provide in combating this disabling disease. 展开更多
关键词 cerebrovascular disease deep learning machine learning reinforcement learning STROKE stroke therapy supervised learning unsupervised learning
下载PDF
改进Q-Learning的路径规划算法研究
19
作者 宋丽君 周紫瑜 +2 位作者 李云龙 侯佳杰 何星 《小型微型计算机系统》 CSCD 北大核心 2024年第4期823-829,共7页
针对Q-Learning算法学习效率低、收敛速度慢且在动态障碍物的环境下路径规划效果不佳的问题,本文提出一种改进Q-Learning的移动机器人路径规划算法.针对该问题,算法根据概率的突变性引入探索因子来平衡探索和利用以加快学习效率;通过在... 针对Q-Learning算法学习效率低、收敛速度慢且在动态障碍物的环境下路径规划效果不佳的问题,本文提出一种改进Q-Learning的移动机器人路径规划算法.针对该问题,算法根据概率的突变性引入探索因子来平衡探索和利用以加快学习效率;通过在更新函数中设计深度学习因子以保证算法探索概率;融合遗传算法,避免陷入局部路径最优同时按阶段探索最优迭代步长次数,以减少动态地图探索重复率;最后提取输出的最优路径关键节点采用贝塞尔曲线进行平滑处理,进一步保证路径平滑度和可行性.实验通过栅格法构建地图,对比实验结果表明,改进后的算法效率相较于传统算法在迭代次数和路径上均有较大优化,且能够较好的实现动态地图下的路径规划,进一步验证所提方法的有效性和实用性. 展开更多
关键词 移动机器人 路径规划 Q-learning算法 平滑处理 动态避障
下载PDF
Significant risk factors for intensive care unit-acquired weakness:A processing strategy based on repeated machine learning 被引量:9
20
作者 Ling Wang Deng-Yan Long 《World Journal of Clinical Cases》 SCIE 2024年第7期1235-1242,共8页
BACKGROUND Intensive care unit-acquired weakness(ICU-AW)is a common complication that significantly impacts the patient's recovery process,even leading to adverse outcomes.Currently,there is a lack of effective pr... BACKGROUND Intensive care unit-acquired weakness(ICU-AW)is a common complication that significantly impacts the patient's recovery process,even leading to adverse outcomes.Currently,there is a lack of effective preventive measures.AIM To identify significant risk factors for ICU-AW through iterative machine learning techniques and offer recommendations for its prevention and treatment.METHODS Patients were categorized into ICU-AW and non-ICU-AW groups on the 14th day post-ICU admission.Relevant data from the initial 14 d of ICU stay,such as age,comorbidities,sedative dosage,vasopressor dosage,duration of mechanical ventilation,length of ICU stay,and rehabilitation therapy,were gathered.The relationships between these variables and ICU-AW were examined.Utilizing iterative machine learning techniques,a multilayer perceptron neural network model was developed,and its predictive performance for ICU-AW was assessed using the receiver operating characteristic curve.RESULTS Within the ICU-AW group,age,duration of mechanical ventilation,lorazepam dosage,adrenaline dosage,and length of ICU stay were significantly higher than in the non-ICU-AW group.Additionally,sepsis,multiple organ dysfunction syndrome,hypoalbuminemia,acute heart failure,respiratory failure,acute kidney injury,anemia,stress-related gastrointestinal bleeding,shock,hypertension,coronary artery disease,malignant tumors,and rehabilitation therapy ratios were significantly higher in the ICU-AW group,demonstrating statistical significance.The most influential factors contributing to ICU-AW were identified as the length of ICU stay(100.0%)and the duration of mechanical ventilation(54.9%).The neural network model predicted ICU-AW with an area under the curve of 0.941,sensitivity of 92.2%,and specificity of 82.7%.CONCLUSION The main factors influencing ICU-AW are the length of ICU stay and the duration of mechanical ventilation.A primary preventive strategy,when feasible,involves minimizing both ICU stay and mechanical ventilation duration. 展开更多
关键词 Intensive care unit-acquired weakness Risk factors Machine learning PREVENTION Strategies
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部