By virtue of the generalized Hellmann-Feynman theorem for the ensemble average, we obtain the internal energy and average energy consumed by the resistance R in a quantized resistance-inductance-capacitance (RLC) el...By virtue of the generalized Hellmann-Feynman theorem for the ensemble average, we obtain the internal energy and average energy consumed by the resistance R in a quantized resistance-inductance-capacitance (RLC) electric circuit. We also calculate the entropy-variation with R. The relation between entropy and R is also derived. By the use of figures we indeed see that the entropy increases with the increment of R.展开更多
Usually the Virial theorem,which can be derived from the Feynman-Hellmann theorem,applies to Hamil-tonians without coordinates-momentum coupling.In this paper we discuss when there are such kind of couplings inHamilto...Usually the Virial theorem,which can be derived from the Feynman-Hellmann theorem,applies to Hamil-tonians without coordinates-momentum coupling.In this paper we discuss when there are such kind of couplings inHamiltonians then how the Virial theorem should be modified.We also discuss the energy contribution arising from thecoordinates-momentum coupling for a definite energy level.展开更多
Following the spirit of thermo field dynamics initiated by Takahashi and Umezawa, we employ the technique of integration within an ordered product of operators to derive the thermal vacuum state (TVS) for the Hamilt...Following the spirit of thermo field dynamics initiated by Takahashi and Umezawa, we employ the technique of integration within an ordered product of operators to derive the thermal vacuum state (TVS) for the Hamiltonian H of the two-coupled-oscillator model. The ensemble averages of the system are derived conveniently by using the TVS. In addition, the entropy for this system is discussed based on the relation between the generalized Hellmann-Feynman theorem and the entroy variation in the context of the TVS.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos.10775097 and 10874174)the Research Foundation of the Education Department of Jiangxi Province of China (Grant No.GJJ10097)
文摘By virtue of the generalized Hellmann-Feynman theorem for the ensemble average, we obtain the internal energy and average energy consumed by the resistance R in a quantized resistance-inductance-capacitance (RLC) electric circuit. We also calculate the entropy-variation with R. The relation between entropy and R is also derived. By the use of figures we indeed see that the entropy increases with the increment of R.
基金the Specialized Research Fund for the Doctorial Progress of Higher Education of China under Grant No.20070358009
文摘Usually the Virial theorem,which can be derived from the Feynman-Hellmann theorem,applies to Hamil-tonians without coordinates-momentum coupling.In this paper we discuss when there are such kind of couplings inHamiltonians then how the Virial theorem should be modified.We also discuss the energy contribution arising from thecoordinates-momentum coupling for a definite energy level.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11175113 and 11264018)the Natural Science Foundation of Jiangxi Province, China (Grant Nos. 20132BAB212006, 20114BAB202004, and 2009GZW0006)+1 种基金the Research Foundation of the Education Department of Jiangxi Province, China (Grant No. GJJ12171)the Open Foundation of the Key Laboratory of Optoelectronic and Telecommunication of Jiangxi Province, China (Grant No. 2013004)
文摘Following the spirit of thermo field dynamics initiated by Takahashi and Umezawa, we employ the technique of integration within an ordered product of operators to derive the thermal vacuum state (TVS) for the Hamiltonian H of the two-coupled-oscillator model. The ensemble averages of the system are derived conveniently by using the TVS. In addition, the entropy for this system is discussed based on the relation between the generalized Hellmann-Feynman theorem and the entroy variation in the context of the TVS.