A numerical study on the acoustic radiation of a propeller interacting with non-uniform inflow has been conducted. Real geometry of a marine propeller DTMB 4118 is used in the calculation, and sliding mesh technique i...A numerical study on the acoustic radiation of a propeller interacting with non-uniform inflow has been conducted. Real geometry of a marine propeller DTMB 4118 is used in the calculation, and sliding mesh technique is adopted to deal with the rotational motion of the propeller. The performance of the DES (Detached Eddy Simulation) approach at capturing the unsteady forces and moments on the propeller is compared with experiment. Far-field sound radiation is predicted by the formation 1A developed by Farassat, an integral solution of FW-H (Ffowcs Williams-Hawkings) equation in time domain. The sound pressure and directivity patterns of the propeller operating in two specific velocity distributions are discussed.展开更多
In this paper,an analytical time domain formulation based on Ffowcs Williams-Hawkings(FW-H)equation is derived for the prediction of the acoustic velocity field generated by moving bodies.This provides the imposition ...In this paper,an analytical time domain formulation based on Ffowcs Williams-Hawkings(FW-H)equation is derived for the prediction of the acoustic velocity field generated by moving bodies.This provides the imposition of the Neumann boundary condition on a rigid scattering surface.In order to calculate the scattering sound pressure of the duct,a thin-body boundary element method(BEM)has been proposed.The radiate sound pressure is calculated using the acoustic analogy FW-H equation.The scattering effect of the duct wall on the propagation of the sound wave is presented using the thin-body BEM.Computational results for a pulsating sphere,dipole source,and a tail rotor verify the method.The sound pressure directivity and scattering effect are shown to demonstrate the applicability and validity of the approach.展开更多
The prediction of the flow-induced noise level is a key issue in the fluid–dynamic acoustics. In the hydroacoustics field, the complicated feedback induced by the flow past open cavities can amplify the convection in...The prediction of the flow-induced noise level is a key issue in the fluid–dynamic acoustics. In the hydroacoustics field, the complicated feedback induced by the flow past open cavities can amplify the convection instability in the shear layer which further leads to important noise radiations. The noise consists of intense narrowband and broadband components. In this paper, the level of the noise radiated by a subsonic cavity flow is calculated by using numerical flow computations based on the large eddy simulation(LES) and by solving the Ffowcs Williams-Hawkings equation. A series of three-dimensional open cavity models with overset grids and appropriate boundary conditions are developed for the hydroacoustic numerical computation. The self-sustained oscillation characteristics of the cavity flow are investigated, together with the mechanisms of the cavity noise generation. The distinguishing features of the flow-induced noise of the underwater structure cavities are studied with respect to the parameters of the cavity models, such as the free stream velocity, the dimensions of the cavity mouth, the angle of the cavity neck, the horizontal and vertical porous cavity models and the actual submarine open cavity model with an incoming flow attack angle. It is shown that it may be feasible to reduce the flow-induced noise by appropriate optimal parameters of the underwater structure cavities.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 11272213)
文摘A numerical study on the acoustic radiation of a propeller interacting with non-uniform inflow has been conducted. Real geometry of a marine propeller DTMB 4118 is used in the calculation, and sliding mesh technique is adopted to deal with the rotational motion of the propeller. The performance of the DES (Detached Eddy Simulation) approach at capturing the unsteady forces and moments on the propeller is compared with experiment. Far-field sound radiation is predicted by the formation 1A developed by Farassat, an integral solution of FW-H (Ffowcs Williams-Hawkings) equation in time domain. The sound pressure and directivity patterns of the propeller operating in two specific velocity distributions are discussed.
文摘In this paper,an analytical time domain formulation based on Ffowcs Williams-Hawkings(FW-H)equation is derived for the prediction of the acoustic velocity field generated by moving bodies.This provides the imposition of the Neumann boundary condition on a rigid scattering surface.In order to calculate the scattering sound pressure of the duct,a thin-body boundary element method(BEM)has been proposed.The radiate sound pressure is calculated using the acoustic analogy FW-H equation.The scattering effect of the duct wall on the propagation of the sound wave is presented using the thin-body BEM.Computational results for a pulsating sphere,dipole source,and a tail rotor verify the method.The sound pressure directivity and scattering effect are shown to demonstrate the applicability and validity of the approach.
文摘The prediction of the flow-induced noise level is a key issue in the fluid–dynamic acoustics. In the hydroacoustics field, the complicated feedback induced by the flow past open cavities can amplify the convection instability in the shear layer which further leads to important noise radiations. The noise consists of intense narrowband and broadband components. In this paper, the level of the noise radiated by a subsonic cavity flow is calculated by using numerical flow computations based on the large eddy simulation(LES) and by solving the Ffowcs Williams-Hawkings equation. A series of three-dimensional open cavity models with overset grids and appropriate boundary conditions are developed for the hydroacoustic numerical computation. The self-sustained oscillation characteristics of the cavity flow are investigated, together with the mechanisms of the cavity noise generation. The distinguishing features of the flow-induced noise of the underwater structure cavities are studied with respect to the parameters of the cavity models, such as the free stream velocity, the dimensions of the cavity mouth, the angle of the cavity neck, the horizontal and vertical porous cavity models and the actual submarine open cavity model with an incoming flow attack angle. It is shown that it may be feasible to reduce the flow-induced noise by appropriate optimal parameters of the underwater structure cavities.