A solid understanding of the efficiency of early selection for fiber dimensions is a prerequisite for breeding slash pine(Pinus elliottii Engelm.)with improved properties for pulp and paper products.Genetic correlatio...A solid understanding of the efficiency of early selection for fiber dimensions is a prerequisite for breeding slash pine(Pinus elliottii Engelm.)with improved properties for pulp and paper products.Genetic correlations between size of fibers,wood quality and growth properties are also important.To accomplish effective early selection for size of fibers and evaluate the impact for wood quality traits and ring widths,core samples were collected from360 trees of 20 open-pollinated Pinus elliottii families from three genetic trials.Cores were measured by SilviScan,and the age trends for phenotypic values,heritability,early-late genetic correlations,and early selection efficiency for fiber dimensions,such as tangential and radial fiber widths,fiber wall thickness and fiber coarseness,and their correlations with microfibril angle(MFA),modulus of elasticity(MOE),wood density and ring width were investigated.Different phenotypic trends were found for tangential and radial fiber widths while fiber coarseness and wall thickness curves were similar.Age trends of heritability based on area-weighted fiber dimensions were different.Low to moderate heritability from pith to bark(~0.5)was found for all fiber dimension across the three sites except for tangential fiber width and wall thickness at the Ganzhou site.Early-late genetic correlations were 0.9 after age of 9 years,and early selection for fiber dimensions could be effective due to strong genetic correlations.Our results showed moderate to strong positive genetic correlations for modulus of elasticity and density with fiber dimensions.The effects on fiber dimensions were weak or moderate when ring width or wood quality traits were selected alone.Estimates of efficiency for early selection indicated that the optimal age for radial fiber width and fiber coarseness was 6-7 years,while for tangential fiber width and wall thickness was 9-10 years.展开更多
As the development of smart electronics, self-powered sources have been attracting increasing attention.This review summarizes research progress of photovoltaic fibers and their integrated power sources with multi-sta...As the development of smart electronics, self-powered sources have been attracting increasing attention.This review summarizes research progress of photovoltaic fibers and their integrated power sources with multi-stage energy conversion. Recent development of three dimensional photovoltaic fibers is glanced with special attention to structure design and materials of typical photovoltaic types(inorganic, organic,dye/quantum dot sensitized and perovskite solar cells). The application of carbon materials in fiber energy is focused as it is a hot topic recently. The hybrid energy systems based on fiber solar cells and fiber supercapacitors, fiber batteries and fiber nanogenerators are summarized together with hybrid energy textiles. This review provides a macroscopic view of novel energy fibers and will attract research interest in flexible/wearable fiber electronics and energy textiles.展开更多
We studied the effect of growth on wood anatomical dimensions and specific gravity of seed-raised plantation wood of Dalbergia sissoo with twelve trees of different diameters and similar ages. Fiber length ranged from...We studied the effect of growth on wood anatomical dimensions and specific gravity of seed-raised plantation wood of Dalbergia sissoo with twelve trees of different diameters and similar ages. Fiber length ranged from 925 to1,287 lm, fiber-diameter was 19–23 lm, wall thickness was4.2–5.4 lm, vessel-element-length was 152–188 lm, vesselelement-diameter was 152–200 lm, and specific gravity was0.59–0.72. Growth parameters including tree height, diameter at breast height, net primary productivity and net ecosystem productivity were significantly and positively correlated.Growth parameters showed non-significant positive relationships with fiber-length, fiber diameter, wall thickness, vessel element length, and vessel element diameter. The trend of wood traits increased with growth. Specific gravity showed non-significant negative relationships with growth parameters. Although the growth rate had varied relationships with wood properties, as reported by various workers, the wood element dimensions showed no significant relationship with growth parameters and there was little effect of growth rate on wood traits in seed-raised plantation of D. sissoo.展开更多
基金supported by the National Natural Science Foundation of China(No.32260407)Science and Technology Leader Foundation of Jiangxi Province(No.20212BCJ23011)National Natural Science Foundation of China(No.31860220 and 32160385)。
文摘A solid understanding of the efficiency of early selection for fiber dimensions is a prerequisite for breeding slash pine(Pinus elliottii Engelm.)with improved properties for pulp and paper products.Genetic correlations between size of fibers,wood quality and growth properties are also important.To accomplish effective early selection for size of fibers and evaluate the impact for wood quality traits and ring widths,core samples were collected from360 trees of 20 open-pollinated Pinus elliottii families from three genetic trials.Cores were measured by SilviScan,and the age trends for phenotypic values,heritability,early-late genetic correlations,and early selection efficiency for fiber dimensions,such as tangential and radial fiber widths,fiber wall thickness and fiber coarseness,and their correlations with microfibril angle(MFA),modulus of elasticity(MOE),wood density and ring width were investigated.Different phenotypic trends were found for tangential and radial fiber widths while fiber coarseness and wall thickness curves were similar.Age trends of heritability based on area-weighted fiber dimensions were different.Low to moderate heritability from pith to bark(~0.5)was found for all fiber dimension across the three sites except for tangential fiber width and wall thickness at the Ganzhou site.Early-late genetic correlations were 0.9 after age of 9 years,and early selection for fiber dimensions could be effective due to strong genetic correlations.Our results showed moderate to strong positive genetic correlations for modulus of elasticity and density with fiber dimensions.The effects on fiber dimensions were weak or moderate when ring width or wood quality traits were selected alone.Estimates of efficiency for early selection indicated that the optimal age for radial fiber width and fiber coarseness was 6-7 years,while for tangential fiber width and wall thickness was 9-10 years.
基金supported by the Natural Science Foundation of China (No. 51573004, No. 51773003, No. 51711540302)the Natural Science Foundation of Beijing City (No. Z16002)the Fundamental Research Funds for the Central Universities (No. 531107051056)
文摘As the development of smart electronics, self-powered sources have been attracting increasing attention.This review summarizes research progress of photovoltaic fibers and their integrated power sources with multi-stage energy conversion. Recent development of three dimensional photovoltaic fibers is glanced with special attention to structure design and materials of typical photovoltaic types(inorganic, organic,dye/quantum dot sensitized and perovskite solar cells). The application of carbon materials in fiber energy is focused as it is a hot topic recently. The hybrid energy systems based on fiber solar cells and fiber supercapacitors, fiber batteries and fiber nanogenerators are summarized together with hybrid energy textiles. This review provides a macroscopic view of novel energy fibers and will attract research interest in flexible/wearable fiber electronics and energy textiles.
文摘We studied the effect of growth on wood anatomical dimensions and specific gravity of seed-raised plantation wood of Dalbergia sissoo with twelve trees of different diameters and similar ages. Fiber length ranged from 925 to1,287 lm, fiber-diameter was 19–23 lm, wall thickness was4.2–5.4 lm, vessel-element-length was 152–188 lm, vesselelement-diameter was 152–200 lm, and specific gravity was0.59–0.72. Growth parameters including tree height, diameter at breast height, net primary productivity and net ecosystem productivity were significantly and positively correlated.Growth parameters showed non-significant positive relationships with fiber-length, fiber diameter, wall thickness, vessel element length, and vessel element diameter. The trend of wood traits increased with growth. Specific gravity showed non-significant negative relationships with growth parameters. Although the growth rate had varied relationships with wood properties, as reported by various workers, the wood element dimensions showed no significant relationship with growth parameters and there was little effect of growth rate on wood traits in seed-raised plantation of D. sissoo.