期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Stiffness degradation-based damage model for RC members and structures using fiber-beam elements 被引量:1
1
作者 Guo Zongming Zhang Yaoting +1 位作者 Lu Jiezhi Fan Jian 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2016年第4期697-714,共18页
To meet the demand for an accurate and highly efficient damage model with a distinct physical meaning for performance-based earthquake engineering applications, a stiffness degradation-based damage model for reinforce... To meet the demand for an accurate and highly efficient damage model with a distinct physical meaning for performance-based earthquake engineering applications, a stiffness degradation-based damage model for reinforced concrete (RC) members and structures was developed using fiber beam-column elements. In this model, damage indices for concrete and steel fibers were defined by the degradation of the initial reloading modulus and the low-cycle fatigue law. Then, section, member, story and structure damage was evaluated by the degradation of the sectional bending stiffness, rod-end bending stiffness, story lateral stiffness and structure lateral stiffness, respectively. The damage model was realized in Matlab by reading in the outputs of OpenSees. The application of the damage model to RC columns and a RC frame indicates that the damage model is capable of accurately predicting the magnitude, position, and evolutionary process of damage, and estimating stow damage more precisely than inter-story drift. Additionally, the damage model establishes a close connection between damage indices at various levels without introducing weighting coefficients or force-displacement relationships. The development of the model has perfected the damage assessment function of OpenSees, laying a solid foundation for damage estimation at various levels of a large-scale structure subjected to seismic loading. 展开更多
关键词 fiber beam-column element stiffness degradation damage index reinforced concrete column reinforced concrete frame
下载PDF
Effect of Fiber Volume Fraction on Longitudinal Tensile Properties of SiCf/Ti-6Al-4V Composites
2
作者 娄菊红 YANG Yanqing LIU Shenquan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第2期278-283,共6页
The longitudinal tensile properties of SiCf/Ti-6Al-4V composites with different fiber volume fractions were simulated by the Monte Carlo 2-D finite element model. The random distribution of fiber strength was expresse... The longitudinal tensile properties of SiCf/Ti-6Al-4V composites with different fiber volume fractions were simulated by the Monte Carlo 2-D finite element model. The random distribution of fiber strength was expressed by the two-parameter Weibull function. Meanwhile, contact elements and birth-death elements were used to describe the interfacial sliding process after debonding and fiber breakage(or matrix cracking) respectively, which was realized by subroutine complied in ANSYS-APDL(ANSYS Parametric Design Language). The experimental results show that the yield stress and ultimate tensile strength of SiCf/Ti-6Al-4V composites increase with increasing fiber volume fraction, while the corresponding strain of them is just on the contrary. In addition, almost the same failure mode is obtained in SiCf/Ti-6Al-4V composites with various fiber volume fractions when the interfacial shear strength is fixed. Finally, the tensile strength predicted by finite element analysis is compared with that predicted by Global load-sharing model, Local load-sharing model and conventional rule of mixtures, thus drawing the conclusion that Local load-sharing model is very perfect for the prediction of the ultimate tensile strength. 展开更多
关键词 composites Monte Carlo finite element modelling longitudinal tensile strength fiber volume fraction
下载PDF
Effects of riverbed scour on seismic performance of high-rise pile cap foundation 被引量:5
3
作者 Han Zhenfeng Ye Aijun Fan Lichu 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2010年第4期533-543,共11页
To explore the seismic performance of a high-rise pile cap foundation with riverbed scour, a finite element model for foundations is introduced in the OpenSees finite element framework. In the model, a fiber element i... To explore the seismic performance of a high-rise pile cap foundation with riverbed scour, a finite element model for foundations is introduced in the OpenSees finite element framework. In the model, a fiber element is used to simulate the pile shaft, a nonlinear p-y element is used to simulate the soil-pile interaction, and the p-factor method is used to reflect the group effects. A global and local scour model is proposed, in which two parameters, the scour depth of the same row of piles and the difference in the scour depth of the upstream pile and the downstream pile, are included to study the influence of scour on the foundation. Several elasto-plastic static pushover analyses are performed on this finite element model. The analysis results indicate that the seismic capacity (or supply) of the foundation is in the worst condition when the predicted deepest global scout depth is reached, and the capacity becomes larger when the local scour depth is below the predicted deepest global scout depth. Therefore, to evaluate the seismic capacity of a foundation, only the predicted deepest global scout depth should be considered. The method used in this paper can be also applied to foundations with other soil types. 展开更多
关键词 riverbed scour high-rise pile cap pile group fiber element seismic capacity PUSHOVER p-y element
下载PDF
Structural Performance of Light Weight Multicellular FRP Composite Bridge Deck Using Finite Element Analysis 被引量:1
4
作者 Woraphot Prachasaree Pongsak Sookmanee 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第5期939-943,共5页
Fiber reinforced polymer (FRP) composite materials having advantages such as higher strength to weight than conventional engineering materials, non-corrosiveness and modularization, which should help engineers to ob... Fiber reinforced polymer (FRP) composite materials having advantages such as higher strength to weight than conventional engineering materials, non-corrosiveness and modularization, which should help engineers to obtain more efficient and cost effective structural materials and systems. Currently, FRP composites are becoming more popular in civil engineering applications. The objectives of this research are to study performance and behavior of light weight multi-cellular FRP composite bridge decks (both module and system levels) under various loading conditions through finite element modeling, and to validate analytical response of FRP composite bridge decks with data from laboratory evaluations. The relative deflection, equivalent flexural rigidity, failure load (mode) and load distribution factors (LDF) based on FE results have been compared with experimental data and discussed in detail. The finite element results showing good correlations with experimental data are presented in this work. 展开更多
关键词 fiber reinforced polymer (FRP) composites bridge deck finite element
下载PDF
A new computational approach for modeling diffusion tractography in the brain
5
作者 Harsha T.Garimella Reuben H.Kraft 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第1期23-26,共4页
Computational models provide additional tools for studying the brain,however,many techniques are currently disconnected from each other.There is a need for new computational approaches that span the range of physics o... Computational models provide additional tools for studying the brain,however,many techniques are currently disconnected from each other.There is a need for new computational approaches that span the range of physics operating in the brain.In this review paper,we offer some new perspectives on how the embedded element method can fill this gap and has the potential to connect a myriad of modeling genre.The embedded element method is a mesh superposition technique used within finite element analysis.This method allows for the incorporation of axonal fiber tracts to be explicitly represented.Here,we explore the use of the approach beyond its original goal of predicting axonal strain in brain injury.We explore the potential application of the embedded element method in areas of electrophysiology,neurodegeneration,neuropharmacology and mechanobiology.We conclude that this method has the potential to provide us with an integrated computational framework that can assist in developing improved diagnostic tools and regeneration technologies. 展开更多
关键词 embedded elements finite element analysis computational biomechanics explicit axonal fiber tracts neural regeneration diffusion tractography
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部