We demonstrate a fiber-loop ring down multi-function sensors system, which can be used to measure refractive index and curvature simultaneously. Good agreement has been found between theoretical analyses and experimen...We demonstrate a fiber-loop ring down multi-function sensors system, which can be used to measure refractive index and curvature simultaneously. Good agreement has been found between theoretical analyses and experimental results. It has great potential for sensor applications.展开更多
Fiber loop ringdown (FLRD) has demonstrated to be capable of sensing various quantities, such as chemical species, pressure, refractive index, strain, temperature, etc.;and it has high potential for the development of...Fiber loop ringdown (FLRD) has demonstrated to be capable of sensing various quantities, such as chemical species, pressure, refractive index, strain, temperature, etc.;and it has high potential for the development of a sensor network. In the present work, we describe design and development of three different types of FLRD sensors for water, cracks, and temperature sensing in concrete structures. All of the three aforementioned sensors were indigenously developed very recently in our laboratory and their capabilities of detecting the respective quantities were demonstrated. Later, all of the sensors were installed in a test grout cube for real-time monitoring. This work presents the results obtained in the laboratory-based experiments as well as the results from the real-time monitoring process in the test cube.展开更多
文摘We demonstrate a fiber-loop ring down multi-function sensors system, which can be used to measure refractive index and curvature simultaneously. Good agreement has been found between theoretical analyses and experimental results. It has great potential for sensor applications.
文摘Fiber loop ringdown (FLRD) has demonstrated to be capable of sensing various quantities, such as chemical species, pressure, refractive index, strain, temperature, etc.;and it has high potential for the development of a sensor network. In the present work, we describe design and development of three different types of FLRD sensors for water, cracks, and temperature sensing in concrete structures. All of the three aforementioned sensors were indigenously developed very recently in our laboratory and their capabilities of detecting the respective quantities were demonstrated. Later, all of the sensors were installed in a test grout cube for real-time monitoring. This work presents the results obtained in the laboratory-based experiments as well as the results from the real-time monitoring process in the test cube.