The high-temperature mechanical behaviors of Multi-Layer Composite Panels(MCP)and Corrugated Sandwich Panels(CSP)of Continuous Glass Fiber-Reinforced Polypropylene(CGFRPP)are critical for their application in aerospac...The high-temperature mechanical behaviors of Multi-Layer Composite Panels(MCP)and Corrugated Sandwich Panels(CSP)of Continuous Glass Fiber-Reinforced Polypropylene(CGFRPP)are critical for their application in aerospace fields,which have been rarely mentioned in previous studies.High-temperature quasi-static tensile and compression tests on CGFRPP MCP are conducted first.The results showed that the tensile and compression strength,stiffness,and tensile modulus of MCP decreased with increasing temperature.The Gibson model was found to be more suitable for predicting the high-temperature mechanical performance of MCP after comparing the calculated results of different theoretical models with experimental data.Secondly,hightemperature planar compression tests were conducted on the CGFRPP CSP,revealing that the main failure modes were corrugated core buckling and delamination between the face panel and core material,with delamination being intensified at higher temperatures.Therefore,we proposed a strength theoretical model that considers structural buckling failure and interface delamination failure,and introduced the influence factor to evaluate the effect of interface delamination on structural strength.展开更多
The application of fiber reinforced plastic(FRP),including carbon FRP and glass FRP,for structural repair and strengthening has grown due to their numerous advantages over conventional materials such as externally b...The application of fiber reinforced plastic(FRP),including carbon FRP and glass FRP,for structural repair and strengthening has grown due to their numerous advantages over conventional materials such as externally bonded reinforcement(EBR) and near-surface mounted(NSM) strengthening techniques.This paper summarizes the results from 21 reinforced concrete beams strengthened with different methods,including externally-bonded and near-surface mounted FRP,to study the strain coordination of the FRP and steel rebar of the RC beam.Since there is relative slipping between the RC beam and the FRP,the strain of the FRP and steel rebar of the RC beam satisfy the quasi-plane-hypothesis;that is,the strain of the longitudinal fiber that parallels the neutral axis of the plated beam within the scope of the effective height(h 0) of the cross section is in direct proportion to the distance from the fiber to the neutral axis.The strain of the FRP and steel rebar satisfies the equation:ε FRP =βε steel,and the value of β is equal to 1.1-1.3 according to the test results.展开更多
Rehabilitation of existing structures with fiber reinforced plastic(FRP)has been growing in popularity because they offer superior performance in terms of resistance to corrosion and high specific stiffness.The strain...Rehabilitation of existing structures with fiber reinforced plastic(FRP)has been growing in popularity because they offer superior performance in terms of resistance to corrosion and high specific stiffness.The strain coordination results of 34 reinforced concrete beams(four groups)strengthened with different methods were presented including external-bonded or near-surface mounted glass or carbon FRP or helical rib bar in order to study the strain coordination of the strengthening materials and steel rebar of RC beam.Because there is relative slipping between concrete and strengthening materials(SM),the strain of SM and steel rebar of RC beam satisfies the double linear strain distribution assumption,that is,the strain of longitudinal fiber parallel to the neutral axis of plated beam within the scope of effective height(h0)of the cross section is in direct proportion to the distance from the fiber to the neutral axis.The strain of SM and steel rebar satisfies the equation εGCH=βεsteel,where the value of β is equal to 1.1-1.3 according to the test results.展开更多
The testing of thirteen reinforeed concrete (RC) beams strengthened by epoxy-bonded glass fiber reinforced plastic plate (GFRP) shows that the RC beam and the GFRP plate with epoxy bonding on it can work fairly we...The testing of thirteen reinforeed concrete (RC) beams strengthened by epoxy-bonded glass fiber reinforced plastic plate (GFRP) shows that the RC beam and the GFRP plate with epoxy bonding on it can work fairly well in coordination to eaeh other. But there is relative slipping between RC beam and GFRP plate. And the strain of GFRP and steel rebar of RC beam satisfies the quasi-plane-hypothesis, that is, the strain of longitudinal fiher that parallels to the neutral axis of plated beam within the scope of effective height ( h0 ) of the cross section is in direct proportion to the distance from the fiber to the neutral axis. The strain of GFRP and steel rebar satisfies the equation: εGFRP=Kεsteel.展开更多
In this study,we present the characterization of the carbon fibers recovered from the mechanochemical-enhanced recycling of carbon fiber reinforced fibers.The objectives of the study were to investigate the effect of ...In this study,we present the characterization of the carbon fibers recovered from the mechanochemical-enhanced recycling of carbon fiber reinforced fibers.The objectives of the study were to investigate the effect of our modified recycling method on the interfacial properties of recovered fibers.The reinforced plastics were recycled;the recycling efficiency was determined and the recovered fibers were sized using 1 wt%and 3 wt%concentration of(3-aminopropyl)triethoxysilane.We characterized the morphologies utilizing the electron spectroscopy for chemical analysis(ESCA),atomic force microscopy(AFM),FTIR-attenuated total reflection(ATR)spectroscopy and scanning electron microscopy(SEM).Although the surface of the fibers had no cracks,there was evidence of contaminations which affected the interfacial properties and the quality of the fibers.Results showed that the trends in the recovered and virgin fibers were similar with an increase in sizing concentration.The results highlighted the perspectives of increasing the quality of recovered fibers after the recycling process.展开更多
Glass fiber reinforced plastics geogrid has a wide application in the field of soil reinforcement because of its high strength, good toughness, and resistance to environmental stress, creep resistance and strong stabi...Glass fiber reinforced plastics geogrid has a wide application in the field of soil reinforcement because of its high strength, good toughness, and resistance to environmental stress, creep resistance and strong stability. In order to get high-powered glass fiber reinforced plastics geogrid and its mechanical characteristics, the properties and physical mechanical index of geogrid have been got through the study of its raw material, production process and important quality index. The analysis and study have been made to the geogrid's mechanical properties with loading speed, three-axial compression, temperature tensile test and FLAC3D numerical simulation, thus obtain the mechanical parameters of its displacement time curve, breaking strength and elongation at break. Some conclusions can be drawn as follows: (a) Using glass fiber materials, knurling and coated projection process, the f^acture strength and corrosion resistance of geogrid are greatly improved and the interlocking bite capability of soil is enhanced. (b) The fracture strength of geogrid is related to temperature and loading rate. When the surrounding rock pressure is fixed, the strength and anti-deformation ability of reinforced soil are significantly enhanced with increasing reinforced layers. (c) The pullout test shows the positive correlation between geogrid displacement and action time. (d) As a new reinforced material, the glass fiber reinforced plastics geogrid is not mature enough in theoretical research and practical experience, so it has become an urgent problem both in theoretical study and practical innovation.展开更多
Formation of entrance and exit defects in coarse pitch orbital drilling(CPOD)of carbon fiber reinforced plastic(CFRP)plates was investigated.Deep observation on entrance and exit morphology shows tear and burr are typ...Formation of entrance and exit defects in coarse pitch orbital drilling(CPOD)of carbon fiber reinforced plastic(CFRP)plates was investigated.Deep observation on entrance and exit morphology shows tear and burr are typical defects.Meanwhile,tear is more obvious than burr,and more entrance tears emerge than exit tears.As one of the major causes of entrance and exit defects in CPOD,cutting forces were substaintially studied by contrast experiments.Then,the effect of cutting parameters on entrance and exit tear was qualitatively analyzed through a single factor test.Experiment results indicate that the variation of rotation speed has little influence on entrance and exit tear.Increasing tangential feed per tooth can enlarge entrance tear,but bring little effect on exit tear.By increasing axial feed pitch,the hole entrance and exit show severe tear.When revolution radius grows bigger and bigger,entrance and exit tear firstly decreases,and then increases.Finally,the models of tear and delamination during CPOD of CFRP were established,the formation mechanisms of entrance and exit defects were revealed,and the control strategies were accordingly put forward.展开更多
Carbon fiber reinforced plastic(CFRP)has been applied in aeronautics,aerospace,automotive and medical industries due to its superior mechanical properties.However,due to its difficult-to-cut characteristic,various dam...Carbon fiber reinforced plastic(CFRP)has been applied in aeronautics,aerospace,automotive and medical industries due to its superior mechanical properties.However,due to its difficult-to-cut characteristic,various damages in twist drilling and chip removal clog in core drilling could happen,inevitably reducing hole quality and hole-manufacturing efficiency.This paper proposes the wave-motion milling(WMM)method for CFRP hole-manufacturing to improve hole quality.This paper presents a motion path model based on the kinematics of the WMM method.The wave-motion cutting mode in WMM was analyzed first.Then,comparison experiments on WMM and conventional helical milling(CHM)of CFRP were carried out under dry conditions.The results showed that the hole surface quality of the CFRP significantly improved with a decrease of 18.1%–36%of Ra value in WMM compared to CHM.WMM exerted a significantly weaker thrust force than that of CHM with a reduction of 12.0%–24.9%and 3%–7.7%for different axial feed per tooth and tangential feed per tooth,respectively.Meanwhile,the hole exit damages significantly decreased in WMM.The average tear length at the hole exit in WMM was reduced by 3.5%–29.5%and 35.5%–44.7%at different axial feed per tooth and tangential feed per tooth,respectively.Moreover,WMM significantly alleviated tool wear.The experimental results suggest that WMM is an effective and promising strategy for CFRP hole-manufacturing.展开更多
Twenty-one square concrete columns were constructed and tested. The testing results indicate that bonded carbon fiber reinforced plastics(CFRP) sheets can be used to increase the strength and improve the serviceabilit...Twenty-one square concrete columns were constructed and tested. The testing results indicate that bonded carbon fiber reinforced plastics(CFRP) sheets can be used to increase the strength and improve the serviceability of damaged concrete columns at low temperatures. The failure of the specimens,in most cases,takes place within the middle half of the columns. And the failure of strengthened columns is sudden and explosive. The CFRP sheets increase both the axial load capacity and the ultimate concrete compressive strain of the columns. The ultimate loads of strengthened columns at-10,0 and 10 ℃ increase averagely by 9.09%,6.63% and 17.83%,respectively,as compared with those of the control specimens. The axial compressive strength of strengthened columns is related to the curing temperatures. The improvement of axial compressive strength decreases with reducing temperature,and when the temperature drops to a certain value,the improvement increases with falling temperature.展开更多
The damage formation and evolution of glass fiber reinforced plastics( GFRP) bar on mechanical properties were mainly evaluated by theoretical analysis and numerical calculations which lack of test basis of damage pro...The damage formation and evolution of glass fiber reinforced plastics( GFRP) bar on mechanical properties were mainly evaluated by theoretical analysis and numerical calculations which lack of test basis of damage process. The two different matrices of unsaturated polyester and vinylester GFRP bars were selected to carry out a series of macro-mesoscopic physical and mechanical tests to analyze the tensile progressive damage process on a multiscale. The formation of apparent crack,the bonding of internal components as well as the strain change were all reflected damage evolution of GFRP bar,and a certain correlation existed between them. Wherein the matrix has an obvious impact on the damage of bar,the component stress transfer effect of vinylester bar is better than unsaturated polyester from crack propagation observation and scanning electron microscopy( SEM). The cyclic loading tests quantitatively reflect the difference of damage accumulation between different matrix bars,and the failure load of bars decreases nearly 10%.展开更多
In order to study the dynamic characteristics of multilayer fiber reinforced plastic(MFRP)shaft,the coupling model of three-dimensional equivalent bending stiffness theory and transfer matrix method is established,and...In order to study the dynamic characteristics of multilayer fiber reinforced plastic(MFRP)shaft,the coupling model of three-dimensional equivalent bending stiffness theory and transfer matrix method is established,and the influence of thickness-radius ratio,length-radius ratio,layer angles,layer proportion,and stacked approaches on MFRP shaft dynamic characteristics is investigated.The result shows that the proposed coupling model has high accuracy in MFRP shaft dynamic performance prediction.The proportion of small-angle layers is the decisive factor of MFRP shaft natural frequency.With the increase of thickness-radius ratio and length-radius ratio,the natural frequency of MFRP shaft decreases.The natural frequency of MFRP shaft with the angle layers combination of±45°and±90°is smaller compared with the metal shaft no matter in simple/free boundary condition or simple/simple supported boundary condition.展开更多
The conductive fiber reinforced plastic was prepared by dispersing electrical conducting filler particles such as aluminum powder, graphite and carbon black to glass fiber reinforced resin. The effects that each or d...The conductive fiber reinforced plastic was prepared by dispersing electrical conducting filler particles such as aluminum powder, graphite and carbon black to glass fiber reinforced resin. The effects that each or double kinds of fillers, also the conductive fiber cloth had done on the electrical and mechanical properties of plastic composites were studied. This paper also provided discussion on the conductive mechanism of fiber reinforced plastic. (Author abstract) 8 Refs.展开更多
To study the response characteristics of the carbon fiber fabric reinforced composites under impact loading, one dimensional strain impact test, multi gauge technique and Lagrange analysis method are used. The decay...To study the response characteristics of the carbon fiber fabric reinforced composites under impact loading, one dimensional strain impact test, multi gauge technique and Lagrange analysis method are used. The decaying rule of the stress σ , strain ε , strain rate ε · and density ρ with time and space is obtained. By the theory of dynamics, the impact response characteristics of the material is analyzed and discussed.展开更多
The assembled form of thick-wall glass fiber reinforced plastics (GFRP) tube and 0Cr18Ni9 austenitic stainless steel pipes was designed as the radius thermal-insulating and load-supporting structure in cryogenic vesse...The assembled form of thick-wall glass fiber reinforced plastics (GFRP) tube and 0Cr18Ni9 austenitic stainless steel pipes was designed as the radius thermal-insulating and load-supporting structure in cryogenic vessels. In order to study the thermal leakage and gap changes on the support structure, as well as radius temperature and stress distribution on GFRP tube, an experimental investigation has been taken. The results indicate that the support structure is proved to fit well as thermal-insulating and load-supporting part in cryo-genic vessels, furthermore has high security during cryogenic applications.展开更多
The earthquake resistant property of reinforced concrete members depends on the interaction between reinforcing bars and surrounding concrete through bond to a large degree. In this paper a general system aimed at dea...The earthquake resistant property of reinforced concrete members depends on the interaction between reinforcing bars and surrounding concrete through bond to a large degree. In this paper a general system aimed at dealing with the failure analysis of reinforced concrete columns strengthened with carbon fiber reinforced plastic (CFRP) sheets including bond slip of the anchored reinforcing bars at the foot of the columns is presented. It is based on the yield design theory with a mixed modeling of the structure, according to which the concrete material is treated as a classical two dimensional continuum, whereas the longitudinal reinforcing bars are regarded as one dimensional rods including bond slip at the foot of the columns. In shear reinforced zones both the shear CFRP sheets and transverse reinforcing bars are incorporated in the analysis through a homogenization procedure and they are only in tension. The approach is then implemented numerically by means of the finite element formulation. The numerical procedure produces accurate estimates for the loading carrying capacity of the shear members taken as an illustrative application by correlation with the experimental results, so the proposed approach is valid.展开更多
By axial compression tests on 6 reinforced concrete slender columns wrapped with carbon fiber-reinforced plastic (CFRP),with slenderness ratio(SR) from 4.5 to 17.5,the results show that when SR increases the retrofitt...By axial compression tests on 6 reinforced concrete slender columns wrapped with carbon fiber-reinforced plastic (CFRP),with slenderness ratio(SR) from 4.5 to 17.5,the results show that when SR increases the retrofitting effect declines. In the case of same SR,the stability coefficient (SC) for the reinforced concrete(RC) columns with CFRP is much less than that without CFRP. There is 20% increase of stable bearing capacity to the former as compared with the latter when the SR in less than 17.5. The study summarized the simplified formula for SC,which provides a reference for engineering designers.展开更多
Static and fatigue tests under compression load were made on impacted AS4/PEEK and T300/913C graphite/epoxy with [45/90/-45/0]5S stacking sequence. The comparison of the damage tolerance assessment for thermosetting a...Static and fatigue tests under compression load were made on impacted AS4/PEEK and T300/913C graphite/epoxy with [45/90/-45/0]5S stacking sequence. The comparison of the damage tolerance assessment for thermosetting and thermoplastic composites shows that thermoplastics are more damage tolerant under compression. Impacted thermoplastic composites have excellent compression-compression fatigue behavior. The damage growth life is only a few percent of their total fatigue life and no regular damage growth can be found. Some design principles for thermosetting composite structures may still be used.展开更多
This paper discusses the results of tests on the shear capacity of reinforced concrete columns strengthened with carbon fiber reinforced plastic (CFRP) sheet. The shear transfer mechanism of the specimens reinforced w...This paper discusses the results of tests on the shear capacity of reinforced concrete columns strengthened with carbon fiber reinforced plastic (CFRP) sheet. The shear transfer mechanism of the specimens reinforced with CFRP sheet was studied. The factors affecting the shear capacity of reinforced concrete columns strengthened with CFRP sheet were analyzed. Several sug-gestions such as the number of layers, width and tensile strength of the CFRP sheet are proposed for this new strengthening technique. Finally, a simple and practical design method is presented in the paper. The calculated results of the suggested method are shown to be in good agreement with the test results. The suggested design method can be used in evaluating the shear capacity of reinforced concrete columns strengthened with CFRP sheet.展开更多
This paper discusses a new fibrous composite known as continuous basalt fiber reinforced polymer /plastic(BFRP).Compared with other fiber reinforced polymer/plastic,BFRP has many advantages,such as ductility,high ther...This paper discusses a new fibrous composite known as continuous basalt fiber reinforced polymer /plastic(BFRP).Compared with other fiber reinforced polymer/plastic,BFRP has many advantages,such as ductility,high thermal resistance,corrosion resistance and economic cost.To test mechanical properties and failure modes of flexural members strengthened with BFRP,flexural experiment is conducted on four two-span T-section continuous beams strengthened with BFRP and one un-strengthened comparative beam.The experimental result shows that the strengthened beams perform remarkably in terms of yield strength,ultimate strength and ductility.BFRP has good prospects in retrofitting and strengthening of concrete structures which require good ductility and corrosion resistance.展开更多
In-situ consolidation forming of high-performance thermoplastic composites by Automated Fiber Placement(AFP)is of significant interest in aerospace.During the laying process,the heating temperature has a great influen...In-situ consolidation forming of high-performance thermoplastic composites by Automated Fiber Placement(AFP)is of significant interest in aerospace.During the laying process,the heating temperature has a great influence on the quality of the formed components.A threedimensional heat transfer finite element model of Carbon Fiber(CF)/Polyether Ether Ketone(PEEK)heated by Slit Structure Nozzle Hot Gas Torch(SSNHGT)assisted AFP is proposed.The influence of gas flow rate,heat transfer distance,and laying speed on heating temperature is analysed.The results show that the overall temperature increases and then decreases as the gas flow rate increases.With the increase in heat transfer distance and laying speed,the overall temperature decreases.Meanwhile,the gas flow rate has the greatest influence on the temperature of CF/PEEK being heated,followed by the laying speed and finally the heat transfer distance.Furthermore,the model can also be extended to other fiber-reinforced polymer composites formed by hot gas torch assisted AFP,which can guide the optimization of process parameters for subsequent heating temperature control.展开更多
基金co-supported by the National Natural Science Foundation of China(Nos.12372127,12202085,12302464)the Fundamental Research Funds for the Central Universities,China(No.2024CDJXY009)+1 种基金the Chongqing Outstanding Youth Fund,China(No.CSTB2024NSCQ-JQX0028)the Chongqing Natural Science Foundation,China(Nos.cstc2021ycjh-bgzxm0117,CSTB2022NSCQ-MSX0608)。
文摘The high-temperature mechanical behaviors of Multi-Layer Composite Panels(MCP)and Corrugated Sandwich Panels(CSP)of Continuous Glass Fiber-Reinforced Polypropylene(CGFRPP)are critical for their application in aerospace fields,which have been rarely mentioned in previous studies.High-temperature quasi-static tensile and compression tests on CGFRPP MCP are conducted first.The results showed that the tensile and compression strength,stiffness,and tensile modulus of MCP decreased with increasing temperature.The Gibson model was found to be more suitable for predicting the high-temperature mechanical performance of MCP after comparing the calculated results of different theoretical models with experimental data.Secondly,hightemperature planar compression tests were conducted on the CGFRPP CSP,revealing that the main failure modes were corrugated core buckling and delamination between the face panel and core material,with delamination being intensified at higher temperatures.Therefore,we proposed a strength theoretical model that considers structural buckling failure and interface delamination failure,and introduced the influence factor to evaluate the effect of interface delamination on structural strength.
基金Consultative Program of the Chinese Academy of Engineeringthe foundation for Excellent Young of Hunan Scientific Committee+1 种基金the National Natural Science Foundation of Hunan Provincethe Science and Research Program of Hunan Province
文摘The application of fiber reinforced plastic(FRP),including carbon FRP and glass FRP,for structural repair and strengthening has grown due to their numerous advantages over conventional materials such as externally bonded reinforcement(EBR) and near-surface mounted(NSM) strengthening techniques.This paper summarizes the results from 21 reinforced concrete beams strengthened with different methods,including externally-bonded and near-surface mounted FRP,to study the strain coordination of the FRP and steel rebar of the RC beam.Since there is relative slipping between the RC beam and the FRP,the strain of the FRP and steel rebar of the RC beam satisfy the quasi-plane-hypothesis;that is,the strain of the longitudinal fiber that parallels the neutral axis of the plated beam within the scope of the effective height(h 0) of the cross section is in direct proportion to the distance from the fiber to the neutral axis.The strain of the FRP and steel rebar satisfies the equation:ε FRP =βε steel,and the value of β is equal to 1.1-1.3 according to the test results.
基金Project(11B033)supported by the Foundation for Excellent Young Scholars of Hunan Scientific Committee,ChinaProject(116001)supported by the Consultative Program of the Chinese Academy of Engineering+1 种基金Project(11JJ6040)supported by the National Natural Science Foundation of Hunan Province,ChinaProject(2010GK3198)supported by the Science and Research Program of Hunan Province,China
文摘Rehabilitation of existing structures with fiber reinforced plastic(FRP)has been growing in popularity because they offer superior performance in terms of resistance to corrosion and high specific stiffness.The strain coordination results of 34 reinforced concrete beams(four groups)strengthened with different methods were presented including external-bonded or near-surface mounted glass or carbon FRP or helical rib bar in order to study the strain coordination of the strengthening materials and steel rebar of RC beam.Because there is relative slipping between concrete and strengthening materials(SM),the strain of SM and steel rebar of RC beam satisfies the double linear strain distribution assumption,that is,the strain of longitudinal fiber parallel to the neutral axis of plated beam within the scope of effective height(h0)of the cross section is in direct proportion to the distance from the fiber to the neutral axis.The strain of SM and steel rebar satisfies the equation εGCH=βεsteel,where the value of β is equal to 1.1-1.3 according to the test results.
基金Sponsored by the Natural Science Foundation of Henan Province(Grant No.004041700).
文摘The testing of thirteen reinforeed concrete (RC) beams strengthened by epoxy-bonded glass fiber reinforced plastic plate (GFRP) shows that the RC beam and the GFRP plate with epoxy bonding on it can work fairly well in coordination to eaeh other. But there is relative slipping between RC beam and GFRP plate. And the strain of GFRP and steel rebar of RC beam satisfies the quasi-plane-hypothesis, that is, the strain of longitudinal fiher that parallels to the neutral axis of plated beam within the scope of effective height ( h0 ) of the cross section is in direct proportion to the distance from the fiber to the neutral axis. The strain of GFRP and steel rebar satisfies the equation: εGFRP=Kεsteel.
基金Project(S2598445) supported by the Project for Cooperative R&D between Industry,Academy and Research Institute Funded by the Korea Ministry of SME and Startups in 2018
文摘In this study,we present the characterization of the carbon fibers recovered from the mechanochemical-enhanced recycling of carbon fiber reinforced fibers.The objectives of the study were to investigate the effect of our modified recycling method on the interfacial properties of recovered fibers.The reinforced plastics were recycled;the recycling efficiency was determined and the recovered fibers were sized using 1 wt%and 3 wt%concentration of(3-aminopropyl)triethoxysilane.We characterized the morphologies utilizing the electron spectroscopy for chemical analysis(ESCA),atomic force microscopy(AFM),FTIR-attenuated total reflection(ATR)spectroscopy and scanning electron microscopy(SEM).Although the surface of the fibers had no cracks,there was evidence of contaminations which affected the interfacial properties and the quality of the fibers.Results showed that the trends in the recovered and virgin fibers were similar with an increase in sizing concentration.The results highlighted the perspectives of increasing the quality of recovered fibers after the recycling process.
基金Funded by National Natural Science Foundation of China(No.41372289)the Shandong Province Higher Educational Science and Technology Program(No.12LH03)+1 种基金the China's Post-doctoral Science Fund(No.2012M521365)the SDUST Research Fund
文摘Glass fiber reinforced plastics geogrid has a wide application in the field of soil reinforcement because of its high strength, good toughness, and resistance to environmental stress, creep resistance and strong stability. In order to get high-powered glass fiber reinforced plastics geogrid and its mechanical characteristics, the properties and physical mechanical index of geogrid have been got through the study of its raw material, production process and important quality index. The analysis and study have been made to the geogrid's mechanical properties with loading speed, three-axial compression, temperature tensile test and FLAC3D numerical simulation, thus obtain the mechanical parameters of its displacement time curve, breaking strength and elongation at break. Some conclusions can be drawn as follows: (a) Using glass fiber materials, knurling and coated projection process, the f^acture strength and corrosion resistance of geogrid are greatly improved and the interlocking bite capability of soil is enhanced. (b) The fracture strength of geogrid is related to temperature and loading rate. When the surrounding rock pressure is fixed, the strength and anti-deformation ability of reinforced soil are significantly enhanced with increasing reinforced layers. (c) The pullout test shows the positive correlation between geogrid displacement and action time. (d) As a new reinforced material, the glass fiber reinforced plastics geogrid is not mature enough in theoretical research and practical experience, so it has become an urgent problem both in theoretical study and practical innovation.
基金supported in part by the Major Project of the Ministry of Science and Technology of China(No.2012ZX04003-031)the Innovation Project of Jiangsu Province(No.2016-05)
文摘Formation of entrance and exit defects in coarse pitch orbital drilling(CPOD)of carbon fiber reinforced plastic(CFRP)plates was investigated.Deep observation on entrance and exit morphology shows tear and burr are typical defects.Meanwhile,tear is more obvious than burr,and more entrance tears emerge than exit tears.As one of the major causes of entrance and exit defects in CPOD,cutting forces were substaintially studied by contrast experiments.Then,the effect of cutting parameters on entrance and exit tear was qualitatively analyzed through a single factor test.Experiment results indicate that the variation of rotation speed has little influence on entrance and exit tear.Increasing tangential feed per tooth can enlarge entrance tear,but bring little effect on exit tear.By increasing axial feed pitch,the hole entrance and exit show severe tear.When revolution radius grows bigger and bigger,entrance and exit tear firstly decreases,and then increases.Finally,the models of tear and delamination during CPOD of CFRP were established,the formation mechanisms of entrance and exit defects were revealed,and the control strategies were accordingly put forward.
基金supported by National Natural Science Foundation of China(Grant No.51905024,51905138,51975035 and 91960203).
文摘Carbon fiber reinforced plastic(CFRP)has been applied in aeronautics,aerospace,automotive and medical industries due to its superior mechanical properties.However,due to its difficult-to-cut characteristic,various damages in twist drilling and chip removal clog in core drilling could happen,inevitably reducing hole quality and hole-manufacturing efficiency.This paper proposes the wave-motion milling(WMM)method for CFRP hole-manufacturing to improve hole quality.This paper presents a motion path model based on the kinematics of the WMM method.The wave-motion cutting mode in WMM was analyzed first.Then,comparison experiments on WMM and conventional helical milling(CHM)of CFRP were carried out under dry conditions.The results showed that the hole surface quality of the CFRP significantly improved with a decrease of 18.1%–36%of Ra value in WMM compared to CHM.WMM exerted a significantly weaker thrust force than that of CHM with a reduction of 12.0%–24.9%and 3%–7.7%for different axial feed per tooth and tangential feed per tooth,respectively.Meanwhile,the hole exit damages significantly decreased in WMM.The average tear length at the hole exit in WMM was reduced by 3.5%–29.5%and 35.5%–44.7%at different axial feed per tooth and tangential feed per tooth,respectively.Moreover,WMM significantly alleviated tool wear.The experimental results suggest that WMM is an effective and promising strategy for CFRP hole-manufacturing.
基金Project(04043076) supported by the Outstanding Youth Foundation for Scientific and Technological Research of Anhui Province, ChinaProject(2007jq1035) supported by the Scientific Research Projects for Young College Teachers of Anhui Province, China
文摘Twenty-one square concrete columns were constructed and tested. The testing results indicate that bonded carbon fiber reinforced plastics(CFRP) sheets can be used to increase the strength and improve the serviceability of damaged concrete columns at low temperatures. The failure of the specimens,in most cases,takes place within the middle half of the columns. And the failure of strengthened columns is sudden and explosive. The CFRP sheets increase both the axial load capacity and the ultimate concrete compressive strain of the columns. The ultimate loads of strengthened columns at-10,0 and 10 ℃ increase averagely by 9.09%,6.63% and 17.83%,respectively,as compared with those of the control specimens. The axial compressive strength of strengthened columns is related to the curing temperatures. The improvement of axial compressive strength decreases with reducing temperature,and when the temperature drops to a certain value,the improvement increases with falling temperature.
基金National Natural Science Foundation of China(No.51278391)Huazhong University of Science and Technology Analytical and Testing Center,China
文摘The damage formation and evolution of glass fiber reinforced plastics( GFRP) bar on mechanical properties were mainly evaluated by theoretical analysis and numerical calculations which lack of test basis of damage process. The two different matrices of unsaturated polyester and vinylester GFRP bars were selected to carry out a series of macro-mesoscopic physical and mechanical tests to analyze the tensile progressive damage process on a multiscale. The formation of apparent crack,the bonding of internal components as well as the strain change were all reflected damage evolution of GFRP bar,and a certain correlation existed between them. Wherein the matrix has an obvious impact on the damage of bar,the component stress transfer effect of vinylester bar is better than unsaturated polyester from crack propagation observation and scanning electron microscopy( SEM). The cyclic loading tests quantitatively reflect the difference of damage accumulation between different matrix bars,and the failure load of bars decreases nearly 10%.
文摘In order to study the dynamic characteristics of multilayer fiber reinforced plastic(MFRP)shaft,the coupling model of three-dimensional equivalent bending stiffness theory and transfer matrix method is established,and the influence of thickness-radius ratio,length-radius ratio,layer angles,layer proportion,and stacked approaches on MFRP shaft dynamic characteristics is investigated.The result shows that the proposed coupling model has high accuracy in MFRP shaft dynamic performance prediction.The proportion of small-angle layers is the decisive factor of MFRP shaft natural frequency.With the increase of thickness-radius ratio and length-radius ratio,the natural frequency of MFRP shaft decreases.The natural frequency of MFRP shaft with the angle layers combination of±45°and±90°is smaller compared with the metal shaft no matter in simple/free boundary condition or simple/simple supported boundary condition.
文摘The conductive fiber reinforced plastic was prepared by dispersing electrical conducting filler particles such as aluminum powder, graphite and carbon black to glass fiber reinforced resin. The effects that each or double kinds of fillers, also the conductive fiber cloth had done on the electrical and mechanical properties of plastic composites were studied. This paper also provided discussion on the conductive mechanism of fiber reinforced plastic. (Author abstract) 8 Refs.
文摘To study the response characteristics of the carbon fiber fabric reinforced composites under impact loading, one dimensional strain impact test, multi gauge technique and Lagrange analysis method are used. The decaying rule of the stress σ , strain ε , strain rate ε · and density ρ with time and space is obtained. By the theory of dynamics, the impact response characteristics of the material is analyzed and discussed.
文摘The assembled form of thick-wall glass fiber reinforced plastics (GFRP) tube and 0Cr18Ni9 austenitic stainless steel pipes was designed as the radius thermal-insulating and load-supporting structure in cryogenic vessels. In order to study the thermal leakage and gap changes on the support structure, as well as radius temperature and stress distribution on GFRP tube, an experimental investigation has been taken. The results indicate that the support structure is proved to fit well as thermal-insulating and load-supporting part in cryo-genic vessels, furthermore has high security during cryogenic applications.
文摘The earthquake resistant property of reinforced concrete members depends on the interaction between reinforcing bars and surrounding concrete through bond to a large degree. In this paper a general system aimed at dealing with the failure analysis of reinforced concrete columns strengthened with carbon fiber reinforced plastic (CFRP) sheets including bond slip of the anchored reinforcing bars at the foot of the columns is presented. It is based on the yield design theory with a mixed modeling of the structure, according to which the concrete material is treated as a classical two dimensional continuum, whereas the longitudinal reinforcing bars are regarded as one dimensional rods including bond slip at the foot of the columns. In shear reinforced zones both the shear CFRP sheets and transverse reinforcing bars are incorporated in the analysis through a homogenization procedure and they are only in tension. The approach is then implemented numerically by means of the finite element formulation. The numerical procedure produces accurate estimates for the loading carrying capacity of the shear members taken as an illustrative application by correlation with the experimental results, so the proposed approach is valid.
文摘By axial compression tests on 6 reinforced concrete slender columns wrapped with carbon fiber-reinforced plastic (CFRP),with slenderness ratio(SR) from 4.5 to 17.5,the results show that when SR increases the retrofitting effect declines. In the case of same SR,the stability coefficient (SC) for the reinforced concrete(RC) columns with CFRP is much less than that without CFRP. There is 20% increase of stable bearing capacity to the former as compared with the latter when the SR in less than 17.5. The study summarized the simplified formula for SC,which provides a reference for engineering designers.
文摘Static and fatigue tests under compression load were made on impacted AS4/PEEK and T300/913C graphite/epoxy with [45/90/-45/0]5S stacking sequence. The comparison of the damage tolerance assessment for thermosetting and thermoplastic composites shows that thermoplastics are more damage tolerant under compression. Impacted thermoplastic composites have excellent compression-compression fatigue behavior. The damage growth life is only a few percent of their total fatigue life and no regular damage growth can be found. Some design principles for thermosetting composite structures may still be used.
文摘This paper discusses the results of tests on the shear capacity of reinforced concrete columns strengthened with carbon fiber reinforced plastic (CFRP) sheet. The shear transfer mechanism of the specimens reinforced with CFRP sheet was studied. The factors affecting the shear capacity of reinforced concrete columns strengthened with CFRP sheet were analyzed. Several sug-gestions such as the number of layers, width and tensile strength of the CFRP sheet are proposed for this new strengthening technique. Finally, a simple and practical design method is presented in the paper. The calculated results of the suggested method are shown to be in good agreement with the test results. The suggested design method can be used in evaluating the shear capacity of reinforced concrete columns strengthened with CFRP sheet.
基金the National Key Technology Research and Development Program(No.2009BAJ28B02)
文摘This paper discusses a new fibrous composite known as continuous basalt fiber reinforced polymer /plastic(BFRP).Compared with other fiber reinforced polymer/plastic,BFRP has many advantages,such as ductility,high thermal resistance,corrosion resistance and economic cost.To test mechanical properties and failure modes of flexural members strengthened with BFRP,flexural experiment is conducted on four two-span T-section continuous beams strengthened with BFRP and one un-strengthened comparative beam.The experimental result shows that the strengthened beams perform remarkably in terms of yield strength,ultimate strength and ductility.BFRP has good prospects in retrofitting and strengthening of concrete structures which require good ductility and corrosion resistance.
基金co-supported by the National Natural Science Foundation of China(No.52205460)the Heilongjiang Provincial Natural Science Foundation of China(No.LH2023E041)the China Scholarship Council(CSC)to study abroad at the Nanyang Technological University.
文摘In-situ consolidation forming of high-performance thermoplastic composites by Automated Fiber Placement(AFP)is of significant interest in aerospace.During the laying process,the heating temperature has a great influence on the quality of the formed components.A threedimensional heat transfer finite element model of Carbon Fiber(CF)/Polyether Ether Ketone(PEEK)heated by Slit Structure Nozzle Hot Gas Torch(SSNHGT)assisted AFP is proposed.The influence of gas flow rate,heat transfer distance,and laying speed on heating temperature is analysed.The results show that the overall temperature increases and then decreases as the gas flow rate increases.With the increase in heat transfer distance and laying speed,the overall temperature decreases.Meanwhile,the gas flow rate has the greatest influence on the temperature of CF/PEEK being heated,followed by the laying speed and finally the heat transfer distance.Furthermore,the model can also be extended to other fiber-reinforced polymer composites formed by hot gas torch assisted AFP,which can guide the optimization of process parameters for subsequent heating temperature control.