The effects of the component gradient distribution at interface and the fiber gradient distribution on the strength of cement-based materials were studied. The results show that the flexural strength and compressive s...The effects of the component gradient distribution at interface and the fiber gradient distribution on the strength of cement-based materials were studied. The results show that the flexural strength and compressive strength of the mortar and concrete with interface component and fiber gradient distributions are obviously improved. The strengthes of the fiber gradient distributed mortar and concrete (FGDM/C) are higher than those of fiber homogeneously distributed mortar and concrete (FHDM/C). To obtain the same strength, therefore, a smaller fiber volume content in FGDM/C is needed than that in FHDM/C. The results also show that the component gradient distribution of the concrete can be obtained by means of multi-layer vibrating formation.展开更多
The 21 dog-bone specimens with different fiber contents and fiber distribution (random chopped fiber or directional continuous filament fiber bundles) were designed and tested under uniaxial tension using domestic PVA...The 21 dog-bone specimens with different fiber contents and fiber distribution (random chopped fiber or directional continuous filament fiber bundles) were designed and tested under uniaxial tension using domestic PVA (polyvinyl alcohol) fiber.High fiber content exerted positive influences on cracking stress,peak stress and deformation capacity of specimens with random chopped fiber,compared with the decrease shown in cracking stress of specimens containing directional fiber bundles.There were multiple cracks in specimens containing directional fiber bundles,while only 1-2 typical cracks could be shown in chopped fiber specimens after being broken.Random chopped fiber connected more closely with matrix compared with that only part of fiber bundles could contact with matrix.Double-fold line model and parabolic model could be used simultaneously to fit well with the uniaxial tension constitutive relations of engineered cementitious composite (ECC).Although the performance of PVA produced in China can not reach to the same level of those from Japan,there exists certain practical value in engineering according to its contribution to deformability of structure.展开更多
A distributed optical fiber disturbance detection system consisted of a Sagnac interferometer and a Mach-Zehnder interferometer is demonstrated. Two interferometers outputs are connected to an electric band-pass filte...A distributed optical fiber disturbance detection system consisted of a Sagnac interferometer and a Mach-Zehnder interferometer is demonstrated. Two interferometers outputs are connected to an electric band-pass filter via a detector respectively. The central frequencies of the two filters are selected adaptively according to the disturbance frequency. The disturbance frequency is obtained by either frequency spectrum of the two interferometers outputs. An alarm is given out only when the Sagnac interferometer output is changed. A disturbance position is determined by calculating a time difference with a cross-correlation method between the filter output connected to the Sagnac interferometer and derivative of the filter output connected to the Mach-Zehnder interferometer. The frequency spectrum, derivative and cross-correlation are obtained by a signal processing system. Theory analysis and simulation results are presented. They show that the system structure and location method are effective, accurate, and immune to environmental variations.展开更多
A non-stretchable fiber rotation in planar flows has been solved. The fiber will rotate periodically or run to the asymptotical direction decided by a discriminant defined in the paper involving the fiber aspect ratio...A non-stretchable fiber rotation in planar flows has been solved. The fiber will rotate periodically or run to the asymptotical direction decided by a discriminant defined in the paper involving the fiber aspect ratio and the flow characteristics. Subsequently the fiber orientation distribution is derived directly without the bother of solving the Fokker-Planck equation. The research clearly indicates the overall configuration of a fiber rotation movement in planar flows.展开更多
The fiber quality status is very important for super quality cotton production and diverse requirements of textile industry in China.In this study,the quality of cotton fiber samples which are collected from 13 major ...The fiber quality status is very important for super quality cotton production and diverse requirements of textile industry in China.In this study,the quality of cotton fiber samples which are collected from 13 major cotton production provinces between 2001 to 2005 were analyzed.Eight quality展开更多
A distributed feedback fiber laser (DFB FL) sensor system with ultra-high resolution is described. The sensor is made by writing distributed feedback structures into a high gain active fiber, and the system employs ...A distributed feedback fiber laser (DFB FL) sensor system with ultra-high resolution is described. The sensor is made by writing distributed feedback structures into a high gain active fiber, and the system employs an unbalanced Michelson interferometer to translate laser wavelength shifts induced by weak measurands into phase shifts. A digital phase generated carrier demodulation scheme is introduced to achieve ultra-high resolution interrogation. A detailed noise analysis of the system is presented, and it is shown that the system resolution is limited by the frequency noise of the DFB FL.展开更多
Background:Fiber length is one of the primary quality parameters for the cotton industry when considering the textile performance and end-use quality of cotton.Currently,many decisions regarding cotton fiber length ut...Background:Fiber length is one of the primary quality parameters for the cotton industry when considering the textile performance and end-use quality of cotton.Currently,many decisions regarding cotton fiber length utilize the industry standard measurement device,i.e.,the High Volume Instrument(HVI).However,it is documented that complete fiber length distributions hold more information than the currently reported HVI length parameters,i.e.,upper half mean length(UHML)and uniformity index(UI).An alternative measurement device,the Advanced Fiber Information System(AFIS),is able to capture additional information about fiber length distribution.What is currently not known is how much additional information the AFIS length distribution holds.Results:The stability of differences in within-sample variation in fiber length captured by the AFIS length distribution by number characterizing differences between samples was deemed stable across the extended testing period.A diverse breeding population was evaluated and four significant sources of within sample variation in length were identified.A comparison of the ability between HVI length parameters and AFIS fiber length distribution to correctly categorize breeding lines to their family was performed.In all cases,the AFIS fiber length distribution more accurately identified germplasm families.Conclusions:The long-term stability test of the AFIS fiber length distribution by number shows that the measurement is stable and can be used to assess differences across samples.However,more information about within-sample variation in fiber length than that can be captured by length parameters is needed to assess differences across samples in many applications.Four length parameters outperform two length parameters when trying to identify the familial background of the samples in this set.These parameters characterize distributional shape differences that are not captured by the standard AFIS length parameters,UQL and short fiber content by number(SFCn).These findings suggest that additional types of variation in cotton fiber length are not captured and are therefore not currently used in most cotton breeding programs.展开更多
Recently, with the rapid development of precision machining, microvibration measurement is required for the manufacturing and installation of parts and components. In this paper, a self-mixing microvibration measureme...Recently, with the rapid development of precision machining, microvibration measurement is required for the manufacturing and installation of parts and components. In this paper, a self-mixing microvibration measurement system of a π-phase shifted Distributed feedback (DFB) fiber laser is introduced. An all-fiberized configuration Er<sup>3+</sup>-Yb<sup>3+</sup> co-doped DFB fiber laser was used as light source, in which an active π-phase shifted fiber Bragg grating (FBG) was wrote on Er<sup>3+</sup>-Yb<sup>3+</sup> co-doped fiber. Using this, it can easily get a single-mode lasing with narrow linewidth. Experimental results demonstrate that the amplitude of vibration can be achieved down to λ/5 without any modulation parts while utilizing the reflecting mirror. It is in good agreement with the theoretical analysis and very helpful in proving sensitivity and stability of the measurement system. In addition, remote vibration measurement with a distance of 20 km is also realized with this system.展开更多
Distributed fiber optic sensors(DFOSs)possess the capability to measure strain and temperature variations over long distances,demonstrating outstanding potential for monitoring underground infrastructure.This study pr...Distributed fiber optic sensors(DFOSs)possess the capability to measure strain and temperature variations over long distances,demonstrating outstanding potential for monitoring underground infrastructure.This study presents a state-of-the-art review of the DFOS applications for monitoring and assessing the deformation behavior of typical tunnel infrastructure,including bored tunnels,conventional tunnels,as well as immersed and cut-and-cover tunnels.DFOS systems based on Brillouin and Rayleigh scattering principles are both considered.When implementing DFOS monitoring,the fiber optic cable can be primarily installed along transverse and longitudinal directions to(1)measure distributed strains by continuously adhering the fiber to the structure’s surface or embedding it in the lining,or(2)measure point displacements by spot-anchoring it on the lining surface.There are four critical aspects of DFOS monitoring,including proper selection of the sensing fiber,selection of the measuring principle for the specific application,design of an effective sensor layout,and establishment of robust field sensor instrumentation.These four issues are comprehensively discussed,and practical suggestions are provided for the implementation of DFOS in tunnel infrastructure monitoring.展开更多
Confinement of rock bolts by the surrounding rock formation has long been recognized as a positive contributor to the pull-out behavior,yet only a few experimental works and analytical models have been reported,most o...Confinement of rock bolts by the surrounding rock formation has long been recognized as a positive contributor to the pull-out behavior,yet only a few experimental works and analytical models have been reported,most of which are based on the global rock bolt response evaluated in pull-out tests.This paper presents a laboratory experimental setup aiming to capture the rock formation effect,while using distributed fiber optic sensing to quantify the effect of the confinement and the reinforcement pull-out behavior on a more local level.It is shown that the behavior along the sample itself varies,with certain points exhibiting stress drops with crack formation.Some edge effects related to the kinematic freedom of the grout to dilate are also observed.Regardless,it was found that the mid-level response is quite similar to the average response along the sample.The ability to characterize the variation of the response along the sample is one of the many advantages high-resolution fiber optic sensing allows in such investigations.The paper also offers a plasticity-based hardening load transfer function,representing a"slice"of the anchor.The paper describes in detail the development of the model and the calibration/determination of its parameters.The suggested model captures well the coupled behavior in which the pull-out process leads to an increase in the confining stress due to dilative behavior.展开更多
This paper investigates the deformation and fracture propagation of sandstone specimen under uniaxial compression using the distributed fiber optic strain sensing(DFOSS)technology.It shows that the DFOSS-based circumf...This paper investigates the deformation and fracture propagation of sandstone specimen under uniaxial compression using the distributed fiber optic strain sensing(DFOSS)technology.It shows that the DFOSS-based circumferential strains are in agreement with the data monitored with the traditional strain gage.The DFOSS successfully scans the full-field view of axial and circumferential strains on the specimen surface.The spatiotemporal strain measurement based on DFOSS manifests crack closure and elastoplastic deformation,detects initialization of microcrack nucleation,and identifies strain localization within the specimen.The DFOSS well observes the effects of rock heterogeneity on rock deformation.The advantage of DFOSS-based strain acquisition includes the high spatiotemporal resolution of signals and the ability of full-surface strain scanning.The introduction to the DFOSS technology yields a better understanding of the rock damage process under uniaxial compression.展开更多
A distributed feedback fiber laser based Bragg grating vibration sensor system is proposed.Demodulated by using an unbalanced M-Z interferometer,experiment demonstrates that the system runs at a sensing sensitivity of...A distributed feedback fiber laser based Bragg grating vibration sensor system is proposed.Demodulated by using an unbalanced M-Z interferometer,experiment demonstrates that the system runs at a sensing sensitivity of about 257.2 rad·s2/m and a resolution of 4.2×10-5 m/s2 for monitoring acceleration.Experimental results show that the phase-shift changes with the acceleration linearly.展开更多
Anthropogenic activity-induced sinkholes pose a serious threat to building safety and human life nowadays.Real-time detection and early warning of sinkhole formation are a key and urgent problem in urban areas.This pa...Anthropogenic activity-induced sinkholes pose a serious threat to building safety and human life nowadays.Real-time detection and early warning of sinkhole formation are a key and urgent problem in urban areas.This paper presents an experimental study to evaluate the feasibility of fiber optic strain sensing nerves in sinkhole monitoring.Combining the artificial neural network(ANN)and particle image velocimetry(PIV)techniques,a series of model tests have been performed to explore the relationship between strain measurements and sinkhole development and to establish a conversion model from strain data to ground settlements.It is demonstrated that the failure mechanism of the soil above the sinkhole developed from a triangle failure plane to a vertical failure plane with increasing collapse volume.Meanwhile,the soil-embedded fiber optic strain sensing nerves allowed deformation monitoring of the ground soil in real time.Furthermore,the characteristics of the measured strain profiles indicate the locations of sinkholes and the associated shear bands.Based on the strain data,the ANN model predicts the ground settlement well.Additionally,micro-anchored fiber optic cables have been proven to increase the soil-to-fiber strain transfer efficiency for large deformation monitoring of ground collapse.展开更多
Multicore fiber(MCF)which contains more than one core in a single fiber cladding has attracted ever increasing attention for application in optical sensing systems owing to its unique capability of independent light t...Multicore fiber(MCF)which contains more than one core in a single fiber cladding has attracted ever increasing attention for application in optical sensing systems owing to its unique capability of independent light transmission in multiple spatial channels.Different from the situation in standard single mode fiber(SMF),the fiber bending gives rise to tangential strain in off-center cores,and this unique feature has been employed for directional bending and shape sensing,where strain measurement is achieved by using either fiber Bragg gratings(FBGs),optical frequency-domain reflectometry(OFDR)or Brillouin distributed sensing technique.On the other hand,the parallel spatial cores enable space-division multiplexed(SDM)system configuration that allows for the multiplexing of multiple distributed sensing techniques.As a result,multi-parameter sensing or performance enhanced sensing can be achieved by using MCF.In this paper,we review the research progress in MCF based distributed fiber sensors.Brief introductions of MCF and the multiplexing/de-multiplexing methods are presented.The bending sensitivity of off-center cores is analyzed.Curvature and shape sensing,as well as various SDM distributed sensing using MCF are summarized,and the working principles of diverse MCF sensors are discussed.Finally,we present the challenges and prospects of MCF for distributed sensing applications.展开更多
A simple distributed optical fiber sensing system used to monitor vibration signal has an additional sub-loop eoupled with main ring by a 3 dB coupler. This paper compares three outputting interfered beams, each of th...A simple distributed optical fiber sensing system used to monitor vibration signal has an additional sub-loop eoupled with main ring by a 3 dB coupler. This paper compares three outputting interfered beams, each of them travels in the sub-ring 0, 1, 2 times, separately. Using the simultaneous equations produced by those three outputs, we find the relation between the interference lights and vibration signal's characteristics, such as frequency, amplitude and position. Through simplifying and calculating, the vibration position can be obtained finally.展开更多
For distributed fiber Raman amplifiers(DFRAs), stimulated Brillouin scattering(SBS) can deplete the pump once occurring and consequently generate gain saturation. On the basis of such a theory, theoretical gain sa...For distributed fiber Raman amplifiers(DFRAs), stimulated Brillouin scattering(SBS) can deplete the pump once occurring and consequently generate gain saturation. On the basis of such a theory, theoretical gain saturation powers in DFRAs with various pump schemes are obtained by calculating SBS thresholds in them, and the experimental results show that they are in excellent agreement with the calculation results. The saturation power of the DFRA with a 300 m W forward pump is as low as 0 d Bm, which needs to be enhanced by phase modulation, and the effect is quantitatively studied. A simple model taking both modulation frequency and index into consideration is presented by introducing a correction factor to evaluate the effect of phase modulation on the enhancement of saturation power. Experimentally, it is shown that such a correction factor decreases as the modulation frequency increases and approaches zero when the modulation frequency becomes high enough. In particular, a phase modulation with a modulation frequency of 100 MHz and a modulation index of 1.380 can enhance the saturation power by 4.44 d B, and the correction factor is 0.25 d B, in which the modulation frequency is high enough. Additionally, the factor is 1.767 d B for the modulation frequency of 25 MHz. On this basis,phase modulations with various indexes and a fixed frequency of 25 MHz are adopted to verify the modified model, and the results are positive. To obtain the highest gain saturation power, the model is referable. The research results provide a guide for the design of practical DFRAs.展开更多
The amplification effect on stimulated Brillouin scattering (SBS) and Rayleigh scattering in the backward pumped G652 fibers Raman amplifier have been researched. The signal source is a tunable narrow spectral bandw...The amplification effect on stimulated Brillouin scattering (SBS) and Rayleigh scattering in the backward pumped G652 fibers Raman amplifier have been researched. The signal source is a tunable narrow spectral bandwidth (〈10 MHz) ECL laser and is pumped by the tunable power 1427.2 nm fiber Raman laser. The Rayleigh scattering lines are amplified by fiber Raman amplifier, and Stokes stimulated Brillouin scattering lines are amplified by fiber Raman amplifier and fiber Brillouin amplifier. The SBS lines total gain is a production of the gain of Raman and the gain of Brillouin amplifier. In experiment, the gain of SBS is about 42 dB and the saturation gain of 25 Ion G652 backward FRA is about 25 dB, so the gain of fiber Brillouin amplifier is about 17 dB.展开更多
The algorithm for evaluation of fiber orientation distribution function (ODF) by laser scattering method based on 2 - dimentional model of fiber arrangement and the method of determining diffuse scattering intensity a...The algorithm for evaluation of fiber orientation distribution function (ODF) by laser scattering method based on 2 - dimentional model of fiber arrangement and the method of determining diffuse scattering intensity are presented. The fiber ODFs of nonwoven samples measured by the computer-program-controlled laser scattering intensity testing system are compared with that of the data obtained by microprojector method. The results show that the algorithm is feasible for assessing the fiber ODFs of nonwoven fabrics manufactured by different processing methods.展开更多
Based on advantages of technology of distributive fiber-optic temperature sensing and specific to its applications in monitoring mine conflagration, the corresponding Processes such as connection arrangement, signal t...Based on advantages of technology of distributive fiber-optic temperature sensing and specific to its applications in monitoring mine conflagration, the corresponding Processes such as connection arrangement, signal transmission and monitoring were illustrated. As applied in Sitai Coal Mine of Datong Coal Mine Group Co., this method is effective and accurate and could provide reliable gist for monitoring spontaneous combustion in gob area of mines.展开更多
A landslide monitoring application is presented by using a high-resolution distributed fiber optic stress sensor. The sensor is used to monitor the intra-stress distribution and variations in landslide bodies, and can...A landslide monitoring application is presented by using a high-resolution distributed fiber optic stress sensor. The sensor is used to monitor the intra-stress distribution and variations in landslide bodies, and can be used for the early warning of the occurrence of the landslides. The principle of distributed fiber optic stress sensing and the intra-stress monitoring method for landslides are described in detail. By measuring the distributed polarization mode coupling in the polarization-maintaining fiber, the distributed fiber stress sensor with stress measuring range 0 to 15 MPa, spatial resolution 10 cm and measuring range 0.5 km, is designed. The warning system is also investigated experimentally in the field trial.展开更多
文摘The effects of the component gradient distribution at interface and the fiber gradient distribution on the strength of cement-based materials were studied. The results show that the flexural strength and compressive strength of the mortar and concrete with interface component and fiber gradient distributions are obviously improved. The strengthes of the fiber gradient distributed mortar and concrete (FGDM/C) are higher than those of fiber homogeneously distributed mortar and concrete (FHDM/C). To obtain the same strength, therefore, a smaller fiber volume content in FGDM/C is needed than that in FHDM/C. The results also show that the component gradient distribution of the concrete can be obtained by means of multi-layer vibrating formation.
基金Funded by the National Key Research and Development Program of China (No. 2019YFE0112600)the Science and Technology Innovation Action Plan of Shanghai of China (No. 19DZ1204900)the Fundamental Research Funds for the Central Universities (Nos. 22120180087 and 2020QNA4018)。
文摘The 21 dog-bone specimens with different fiber contents and fiber distribution (random chopped fiber or directional continuous filament fiber bundles) were designed and tested under uniaxial tension using domestic PVA (polyvinyl alcohol) fiber.High fiber content exerted positive influences on cracking stress,peak stress and deformation capacity of specimens with random chopped fiber,compared with the decrease shown in cracking stress of specimens containing directional fiber bundles.There were multiple cracks in specimens containing directional fiber bundles,while only 1-2 typical cracks could be shown in chopped fiber specimens after being broken.Random chopped fiber connected more closely with matrix compared with that only part of fiber bundles could contact with matrix.Double-fold line model and parabolic model could be used simultaneously to fit well with the uniaxial tension constitutive relations of engineered cementitious composite (ECC).Although the performance of PVA produced in China can not reach to the same level of those from Japan,there exists certain practical value in engineering according to its contribution to deformability of structure.
基金Project supported by the Innovation Program of Education Commission of Shanghai Municipality (Grant No.10YZ19)the Shanghai Leading Academic Discipline Project (Grant No.S30108)the Shanghai Key Laboratory of Specialty Fiber Optics and Optical Access Networks (Grant No.SKLSFO200903)
文摘A distributed optical fiber disturbance detection system consisted of a Sagnac interferometer and a Mach-Zehnder interferometer is demonstrated. Two interferometers outputs are connected to an electric band-pass filter via a detector respectively. The central frequencies of the two filters are selected adaptively according to the disturbance frequency. The disturbance frequency is obtained by either frequency spectrum of the two interferometers outputs. An alarm is given out only when the Sagnac interferometer output is changed. A disturbance position is determined by calculating a time difference with a cross-correlation method between the filter output connected to the Sagnac interferometer and derivative of the filter output connected to the Mach-Zehnder interferometer. The frequency spectrum, derivative and cross-correlation are obtained by a signal processing system. Theory analysis and simulation results are presented. They show that the system structure and location method are effective, accurate, and immune to environmental variations.
基金Project (No. 10632070) supported by the Major Program of theNational Natural Science Foundation of China
文摘A non-stretchable fiber rotation in planar flows has been solved. The fiber will rotate periodically or run to the asymptotical direction decided by a discriminant defined in the paper involving the fiber aspect ratio and the flow characteristics. Subsequently the fiber orientation distribution is derived directly without the bother of solving the Fokker-Planck equation. The research clearly indicates the overall configuration of a fiber rotation movement in planar flows.
文摘The fiber quality status is very important for super quality cotton production and diverse requirements of textile industry in China.In this study,the quality of cotton fiber samples which are collected from 13 major cotton production provinces between 2001 to 2005 were analyzed.Eight quality
基金supported by the National 863 Projects under Grant No. 2007AA03Z415.
文摘A distributed feedback fiber laser (DFB FL) sensor system with ultra-high resolution is described. The sensor is made by writing distributed feedback structures into a high gain active fiber, and the system employs an unbalanced Michelson interferometer to translate laser wavelength shifts induced by weak measurands into phase shifts. A digital phase generated carrier demodulation scheme is introduced to achieve ultra-high resolution interrogation. A detailed noise analysis of the system is presented, and it is shown that the system resolution is limited by the frequency noise of the DFB FL.
基金Funds for this research were provided by Cotton Incorporated and the Cotton Incorporated Fellowship Program project number 17–539。
文摘Background:Fiber length is one of the primary quality parameters for the cotton industry when considering the textile performance and end-use quality of cotton.Currently,many decisions regarding cotton fiber length utilize the industry standard measurement device,i.e.,the High Volume Instrument(HVI).However,it is documented that complete fiber length distributions hold more information than the currently reported HVI length parameters,i.e.,upper half mean length(UHML)and uniformity index(UI).An alternative measurement device,the Advanced Fiber Information System(AFIS),is able to capture additional information about fiber length distribution.What is currently not known is how much additional information the AFIS length distribution holds.Results:The stability of differences in within-sample variation in fiber length captured by the AFIS length distribution by number characterizing differences between samples was deemed stable across the extended testing period.A diverse breeding population was evaluated and four significant sources of within sample variation in length were identified.A comparison of the ability between HVI length parameters and AFIS fiber length distribution to correctly categorize breeding lines to their family was performed.In all cases,the AFIS fiber length distribution more accurately identified germplasm families.Conclusions:The long-term stability test of the AFIS fiber length distribution by number shows that the measurement is stable and can be used to assess differences across samples.However,more information about within-sample variation in fiber length than that can be captured by length parameters is needed to assess differences across samples in many applications.Four length parameters outperform two length parameters when trying to identify the familial background of the samples in this set.These parameters characterize distributional shape differences that are not captured by the standard AFIS length parameters,UQL and short fiber content by number(SFCn).These findings suggest that additional types of variation in cotton fiber length are not captured and are therefore not currently used in most cotton breeding programs.
文摘Recently, with the rapid development of precision machining, microvibration measurement is required for the manufacturing and installation of parts and components. In this paper, a self-mixing microvibration measurement system of a π-phase shifted Distributed feedback (DFB) fiber laser is introduced. An all-fiberized configuration Er<sup>3+</sup>-Yb<sup>3+</sup> co-doped DFB fiber laser was used as light source, in which an active π-phase shifted fiber Bragg grating (FBG) was wrote on Er<sup>3+</sup>-Yb<sup>3+</sup> co-doped fiber. Using this, it can easily get a single-mode lasing with narrow linewidth. Experimental results demonstrate that the amplitude of vibration can be achieved down to λ/5 without any modulation parts while utilizing the reflecting mirror. It is in good agreement with the theoretical analysis and very helpful in proving sensitivity and stability of the measurement system. In addition, remote vibration measurement with a distance of 20 km is also realized with this system.
基金funding support from Rijkswaterstaat,the Netherlands,and European Union’s Horizon 2020 Research and Innovation Programme(Project SAFE-10-T under Grant No.723254)China Scholarship Council,and National Natural Science Foundation of China(Grant No.42225702).
文摘Distributed fiber optic sensors(DFOSs)possess the capability to measure strain and temperature variations over long distances,demonstrating outstanding potential for monitoring underground infrastructure.This study presents a state-of-the-art review of the DFOS applications for monitoring and assessing the deformation behavior of typical tunnel infrastructure,including bored tunnels,conventional tunnels,as well as immersed and cut-and-cover tunnels.DFOS systems based on Brillouin and Rayleigh scattering principles are both considered.When implementing DFOS monitoring,the fiber optic cable can be primarily installed along transverse and longitudinal directions to(1)measure distributed strains by continuously adhering the fiber to the structure’s surface or embedding it in the lining,or(2)measure point displacements by spot-anchoring it on the lining surface.There are four critical aspects of DFOS monitoring,including proper selection of the sensing fiber,selection of the measuring principle for the specific application,design of an effective sensor layout,and establishment of robust field sensor instrumentation.These four issues are comprehensively discussed,and practical suggestions are provided for the implementation of DFOS in tunnel infrastructure monitoring.
基金funding support from the Israeli Ministry of Housing and Construction(Grant No.2028286).
文摘Confinement of rock bolts by the surrounding rock formation has long been recognized as a positive contributor to the pull-out behavior,yet only a few experimental works and analytical models have been reported,most of which are based on the global rock bolt response evaluated in pull-out tests.This paper presents a laboratory experimental setup aiming to capture the rock formation effect,while using distributed fiber optic sensing to quantify the effect of the confinement and the reinforcement pull-out behavior on a more local level.It is shown that the behavior along the sample itself varies,with certain points exhibiting stress drops with crack formation.Some edge effects related to the kinematic freedom of the grout to dilate are also observed.Regardless,it was found that the mid-level response is quite similar to the average response along the sample.The ability to characterize the variation of the response along the sample is one of the many advantages high-resolution fiber optic sensing allows in such investigations.The paper also offers a plasticity-based hardening load transfer function,representing a"slice"of the anchor.The paper describes in detail the development of the model and the calibration/determination of its parameters.The suggested model captures well the coupled behavior in which the pull-out process leads to an increase in the confining stress due to dilative behavior.
基金support from the Institute of Crustal Dynamics,China Earthquake Administration(Grant No.ZDJ2016-20 and ZDJ2019-15)。
文摘This paper investigates the deformation and fracture propagation of sandstone specimen under uniaxial compression using the distributed fiber optic strain sensing(DFOSS)technology.It shows that the DFOSS-based circumferential strains are in agreement with the data monitored with the traditional strain gage.The DFOSS successfully scans the full-field view of axial and circumferential strains on the specimen surface.The spatiotemporal strain measurement based on DFOSS manifests crack closure and elastoplastic deformation,detects initialization of microcrack nucleation,and identifies strain localization within the specimen.The DFOSS well observes the effects of rock heterogeneity on rock deformation.The advantage of DFOSS-based strain acquisition includes the high spatiotemporal resolution of signals and the ability of full-surface strain scanning.The introduction to the DFOSS technology yields a better understanding of the rock damage process under uniaxial compression.
基金supported by the Science Fund for Young Scholars of Heilongjiang University,China(No.QL200901)
文摘A distributed feedback fiber laser based Bragg grating vibration sensor system is proposed.Demodulated by using an unbalanced M-Z interferometer,experiment demonstrates that the system runs at a sensing sensitivity of about 257.2 rad·s2/m and a resolution of 4.2×10-5 m/s2 for monitoring acceleration.Experimental results show that the phase-shift changes with the acceleration linearly.
基金support provided by the National Natural Science Foundation of China(Grant Nos.42225702,and 42077232)the Open Research Project Program of the State Key Laboratory of Internet of Things for Smart City(University of Macao)(Grant No.SKL-IoTSC(UM)-2021-2023/ORP/GA10/2022).
文摘Anthropogenic activity-induced sinkholes pose a serious threat to building safety and human life nowadays.Real-time detection and early warning of sinkhole formation are a key and urgent problem in urban areas.This paper presents an experimental study to evaluate the feasibility of fiber optic strain sensing nerves in sinkhole monitoring.Combining the artificial neural network(ANN)and particle image velocimetry(PIV)techniques,a series of model tests have been performed to explore the relationship between strain measurements and sinkhole development and to establish a conversion model from strain data to ground settlements.It is demonstrated that the failure mechanism of the soil above the sinkhole developed from a triangle failure plane to a vertical failure plane with increasing collapse volume.Meanwhile,the soil-embedded fiber optic strain sensing nerves allowed deformation monitoring of the ground soil in real time.Furthermore,the characteristics of the measured strain profiles indicate the locations of sinkholes and the associated shear bands.Based on the strain data,the ANN model predicts the ground settlement well.Additionally,micro-anchored fiber optic cables have been proven to increase the soil-to-fiber strain transfer efficiency for large deformation monitoring of ground collapse.
文摘Multicore fiber(MCF)which contains more than one core in a single fiber cladding has attracted ever increasing attention for application in optical sensing systems owing to its unique capability of independent light transmission in multiple spatial channels.Different from the situation in standard single mode fiber(SMF),the fiber bending gives rise to tangential strain in off-center cores,and this unique feature has been employed for directional bending and shape sensing,where strain measurement is achieved by using either fiber Bragg gratings(FBGs),optical frequency-domain reflectometry(OFDR)or Brillouin distributed sensing technique.On the other hand,the parallel spatial cores enable space-division multiplexed(SDM)system configuration that allows for the multiplexing of multiple distributed sensing techniques.As a result,multi-parameter sensing or performance enhanced sensing can be achieved by using MCF.In this paper,we review the research progress in MCF based distributed fiber sensors.Brief introductions of MCF and the multiplexing/de-multiplexing methods are presented.The bending sensitivity of off-center cores is analyzed.Curvature and shape sensing,as well as various SDM distributed sensing using MCF are summarized,and the working principles of diverse MCF sensors are discussed.Finally,we present the challenges and prospects of MCF for distributed sensing applications.
文摘A simple distributed optical fiber sensing system used to monitor vibration signal has an additional sub-loop eoupled with main ring by a 3 dB coupler. This paper compares three outputting interfered beams, each of them travels in the sub-ring 0, 1, 2 times, separately. Using the simultaneous equations produced by those three outputs, we find the relation between the interference lights and vibration signal's characteristics, such as frequency, amplitude and position. Through simplifying and calculating, the vibration position can be obtained finally.
基金Project supported by the National Natural Science Foundation of China(Grant No.61177073)the Major Application Basic Research Project of National University of Defense Technology,China(Grant No.ZDYYJCYJ20140701)
文摘For distributed fiber Raman amplifiers(DFRAs), stimulated Brillouin scattering(SBS) can deplete the pump once occurring and consequently generate gain saturation. On the basis of such a theory, theoretical gain saturation powers in DFRAs with various pump schemes are obtained by calculating SBS thresholds in them, and the experimental results show that they are in excellent agreement with the calculation results. The saturation power of the DFRA with a 300 m W forward pump is as low as 0 d Bm, which needs to be enhanced by phase modulation, and the effect is quantitatively studied. A simple model taking both modulation frequency and index into consideration is presented by introducing a correction factor to evaluate the effect of phase modulation on the enhancement of saturation power. Experimentally, it is shown that such a correction factor decreases as the modulation frequency increases and approaches zero when the modulation frequency becomes high enough. In particular, a phase modulation with a modulation frequency of 100 MHz and a modulation index of 1.380 can enhance the saturation power by 4.44 d B, and the correction factor is 0.25 d B, in which the modulation frequency is high enough. Additionally, the factor is 1.767 d B for the modulation frequency of 25 MHz. On this basis,phase modulations with various indexes and a fixed frequency of 25 MHz are adopted to verify the modified model, and the results are positive. To obtain the highest gain saturation power, the model is referable. The research results provide a guide for the design of practical DFRAs.
基金supported by the National Natural Science Foundation under Grant No. 60608009Zhejiang Science Foundation under Grant No. Y107091.
文摘The amplification effect on stimulated Brillouin scattering (SBS) and Rayleigh scattering in the backward pumped G652 fibers Raman amplifier have been researched. The signal source is a tunable narrow spectral bandwidth (〈10 MHz) ECL laser and is pumped by the tunable power 1427.2 nm fiber Raman laser. The Rayleigh scattering lines are amplified by fiber Raman amplifier, and Stokes stimulated Brillouin scattering lines are amplified by fiber Raman amplifier and fiber Brillouin amplifier. The SBS lines total gain is a production of the gain of Raman and the gain of Brillouin amplifier. In experiment, the gain of SBS is about 42 dB and the saturation gain of 25 Ion G652 backward FRA is about 25 dB, so the gain of fiber Brillouin amplifier is about 17 dB.
基金This project is supported by Key Subject Foundation of Shanghai Educational Committee.
文摘The algorithm for evaluation of fiber orientation distribution function (ODF) by laser scattering method based on 2 - dimentional model of fiber arrangement and the method of determining diffuse scattering intensity are presented. The fiber ODFs of nonwoven samples measured by the computer-program-controlled laser scattering intensity testing system are compared with that of the data obtained by microprojector method. The results show that the algorithm is feasible for assessing the fiber ODFs of nonwoven fabrics manufactured by different processing methods.
基金Supported by the National Natural Science Foundation of China (50375026,50375028)
文摘Based on advantages of technology of distributive fiber-optic temperature sensing and specific to its applications in monitoring mine conflagration, the corresponding Processes such as connection arrangement, signal transmission and monitoring were illustrated. As applied in Sitai Coal Mine of Datong Coal Mine Group Co., this method is effective and accurate and could provide reliable gist for monitoring spontaneous combustion in gob area of mines.
基金supported by the National Natural Science Foundation of China under Grant No. 60377021partially supported by Program for New Century Excellent Talents in University under Grant. No. NCET-07-0152Sichuan Scientific Funds for Young Researchers under Grant No. 08ZQ026-012.
文摘A landslide monitoring application is presented by using a high-resolution distributed fiber optic stress sensor. The sensor is used to monitor the intra-stress distribution and variations in landslide bodies, and can be used for the early warning of the occurrence of the landslides. The principle of distributed fiber optic stress sensing and the intra-stress monitoring method for landslides are described in detail. By measuring the distributed polarization mode coupling in the polarization-maintaining fiber, the distributed fiber stress sensor with stress measuring range 0 to 15 MPa, spatial resolution 10 cm and measuring range 0.5 km, is designed. The warning system is also investigated experimentally in the field trial.