This paper presents an investigation of specific optical fiber core mode leakage behavior that occurs in high-power double-clad fiber lasers as a result of thermally-induced refractive index variations. A model of the...This paper presents an investigation of specific optical fiber core mode leakage behavior that occurs in high-power double-clad fiber lasers as a result of thermally-induced refractive index variations. A model of the power transfer between the core modes and the cladding modes during thermally-induced refractive index variations is established based on the mode coupling theory. The results of numerical simulations based on actual laser parameters are presented. Experimental measurements were also carried out, the results showed good agreement with the corresponding simulation results.展开更多
A low-repetition-rate, all-polarization-maintaining(PM)-fiber sub-nanosecond oscillator is presented, which is simple and low-cost, composed of standard components. The ring cavity is elongated by 114-m-long standar...A low-repetition-rate, all-polarization-maintaining(PM)-fiber sub-nanosecond oscillator is presented, which is simple and low-cost, composed of standard components. The ring cavity is elongated by 114-m-long standard PM fiber, and passively mode-locked by a fiber pigtailed semiconductor saturable absorber. Linearly polarized pulses with 1.66 MHz repetition rate and 22 dB polarization extinction ratio are generated at a wavelength of 1030 nm, which is determined by an intracavity filter. In addition, to demonstrate that the oscillator is a good seed for high energy pulse generation, an all-fiber master oscillator power amplifier is built and amplified pulses with energy about 2 μJ are obtained.展开更多
An ultrafast fiber laser system comprising two coherently combined amplifier channels is reported.Within this system,each channel incorporates a rod-type fiber power amplifier,with individual operations reaching appro...An ultrafast fiber laser system comprising two coherently combined amplifier channels is reported.Within this system,each channel incorporates a rod-type fiber power amplifier,with individual operations reaching approximately 233 W.The active-locking of these coherently combined channels,followed by compression using gratings,yields an output with a pulse energy of 504μJ and an average power of 403 W.Exceptional stability is maintained,with a 0.3%root mean square(RMS)deviation and a beam quality factor M^(2)<1.2.Notably,precise dispersion management of the front-end seed light effectively compensates for the accumulated high-order dispersion in subsequent amplification stages.This strategic approach results in a significant reduction in the final output pulse duration for the coherently combined laser beam,reducing it from 488 to 260 fs after the gratings compressor,while concurrently enhancing the energy of the primary peak from 65%to 92%.展开更多
A review on the progress of powerful 2 μm silica fiber sources in past decades is presented. We review the state-of-the-art records and representative achievements of 2 μm high-average-power continuous- wave, pulsed...A review on the progress of powerful 2 μm silica fiber sources in past decades is presented. We review the state-of-the-art records and representative achievements of 2 μm high-average-power continuous- wave, pulsed fiber lasers and amplifiers, and powerful superfluorescent sources. Challenges which limit the further power scaling of 2 μm silica fiber sources are discussed, including pumping brightness limitation, thermal problem and nonlinear effects. Potential and promising roadmaps to go beyond these limitations, like tandem pumping and beam combining, are discussed. Prospects of powerful 2 μm silica fiber sources are also presented in the end of paper.展开更多
Theoretical and experimental studies of the influence of the mode competition on the output beam quality of fiber amplifiers are presented. Rate equations and modal decomposition method are used in the theoretical mod...Theoretical and experimental studies of the influence of the mode competition on the output beam quality of fiber amplifiers are presented. Rate equations and modal decomposition method are used in the theoretical model. In the experiment, the output beam-quality factor of a fiber amplifier, which is based on a Yb-doped double-clad large mode area fiber as a function of the seed beam quality and the pump power of the amplifier, is measured. The experimental results are consistent with the theoretical analysis.展开更多
We report femtosecond pulse generation in an amplifier similariton oscillator and a prechirped fiber amplifier system. The final output power is 1.4W, and the fundamental repetition rate is 19.1 MHz after a single sta...We report femtosecond pulse generation in an amplifier similariton oscillator and a prechirped fiber amplifier system. The final output power is 1.4W, and the fundamental repetition rate is 19.1 MHz after a single state fiber amplifier. The pulsewidth is 109 fs.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61307057 and 61675114)
文摘This paper presents an investigation of specific optical fiber core mode leakage behavior that occurs in high-power double-clad fiber lasers as a result of thermally-induced refractive index variations. A model of the power transfer between the core modes and the cladding modes during thermally-induced refractive index variations is established based on the mode coupling theory. The results of numerical simulations based on actual laser parameters are presented. Experimental measurements were also carried out, the results showed good agreement with the corresponding simulation results.
基金Project supported by the Initiative Research Program of State Key Laboratory of Precision Measurement Technology and Instruments,Chinathe National Natural Science Foundation of China(Grant No.51527901)
文摘A low-repetition-rate, all-polarization-maintaining(PM)-fiber sub-nanosecond oscillator is presented, which is simple and low-cost, composed of standard components. The ring cavity is elongated by 114-m-long standard PM fiber, and passively mode-locked by a fiber pigtailed semiconductor saturable absorber. Linearly polarized pulses with 1.66 MHz repetition rate and 22 dB polarization extinction ratio are generated at a wavelength of 1030 nm, which is determined by an intracavity filter. In addition, to demonstrate that the oscillator is a good seed for high energy pulse generation, an all-fiber master oscillator power amplifier is built and amplified pulses with energy about 2 μJ are obtained.
基金supported by the National Natural Science Foundation of China(NSFC)(Grant Nos.9215010612021004,and 11934006)the Innovation Project of Optics Valley Laboratory(No.OVL2021ZD001),the Major Program(JD)of Hubei Province(No.203BAA015)the Cross Research Support Program of Huazhong University of Science and Technology(No.2023JCYJ041).
文摘An ultrafast fiber laser system comprising two coherently combined amplifier channels is reported.Within this system,each channel incorporates a rod-type fiber power amplifier,with individual operations reaching approximately 233 W.The active-locking of these coherently combined channels,followed by compression using gratings,yields an output with a pulse energy of 504μJ and an average power of 403 W.Exceptional stability is maintained,with a 0.3%root mean square(RMS)deviation and a beam quality factor M^(2)<1.2.Notably,precise dispersion management of the front-end seed light effectively compensates for the accumulated high-order dispersion in subsequent amplification stages.This strategic approach results in a significant reduction in the final output pulse duration for the coherently combined laser beam,reducing it from 488 to 260 fs after the gratings compressor,while concurrently enhancing the energy of the primary peak from 65%to 92%.
基金supported by the National Nature Science Foundation of China under Grant No.61322505Innovation Foundation for Graduates of National University of Defense Technology under Grant No.B130704
文摘A review on the progress of powerful 2 μm silica fiber sources in past decades is presented. We review the state-of-the-art records and representative achievements of 2 μm high-average-power continuous- wave, pulsed fiber lasers and amplifiers, and powerful superfluorescent sources. Challenges which limit the further power scaling of 2 μm silica fiber sources are discussed, including pumping brightness limitation, thermal problem and nonlinear effects. Potential and promising roadmaps to go beyond these limitations, like tandem pumping and beam combining, are discussed. Prospects of powerful 2 μm silica fiber sources are also presented in the end of paper.
基金Project supported by the National Natural Science Foundation of China(Grant No.61307057)the State Key Laboratory of Tribology,Tsinghua University,China(Grant No.SKLT12B08)and the China Postdoctoral Science Foundation(Grant Nos.2012M520258 and 2013T60109)
文摘Theoretical and experimental studies of the influence of the mode competition on the output beam quality of fiber amplifiers are presented. Rate equations and modal decomposition method are used in the theoretical model. In the experiment, the output beam-quality factor of a fiber amplifier, which is based on a Yb-doped double-clad large mode area fiber as a function of the seed beam quality and the pump power of the amplifier, is measured. The experimental results are consistent with the theoretical analysis.
基金supported by the Ministry of Science and Technology Support Program (2012BAI08B05)the international cooperation program (2011DFA33130)
文摘We report femtosecond pulse generation in an amplifier similariton oscillator and a prechirped fiber amplifier system. The final output power is 1.4W, and the fundamental repetition rate is 19.1 MHz after a single state fiber amplifier. The pulsewidth is 109 fs.