This paper introduces the application of a slant lens fiber in a reflective fiber optical displacement sensor, namely the receiving fiber use the slant lens fiber. Based on the characteristic formula expression of the...This paper introduces the application of a slant lens fiber in a reflective fiber optical displacement sensor, namely the receiving fiber use the slant lens fiber. Based on the characteristic formula expression of the intensity modulation of planar single fiber pair, a mathematic model of single fiber fair intensity modulation is established. After simulation experiment, the influence of fiber spacing, fiber core diameter and fiber numerical aperture on the modulation characteristics of the sensor is summarized.展开更多
The beams of 980nm high-power LDs are analyzed, and the reasons that aspect ratio of LD beams is high are explained. It is certified by the test that cylindrical lens can efficiently compress the perpendicular diverge...The beams of 980nm high-power LDs are analyzed, and the reasons that aspect ratio of LD beams is high are explained. It is certified by the test that cylindrical lens can efficiently compress the perpendicular divergence angle of the beam. Some typical and popular lensed fibers were compared and analyzed according to coupling characteristics. The factors which affect the coupling efficiency and tolerance of the wedged-shaped GRIN tipped lensed fiber are pointed out, and some methods to reduce the coupling loss of the lensed fibers are proposed finally.展开更多
We report a low-fabrication-complexity and wideband fiber lens,which is formed by fiber facet etching and filling high refractive index UV adhesive.The optical field can be significantly shrunk by the facet lens so as...We report a low-fabrication-complexity and wideband fiber lens,which is formed by fiber facet etching and filling high refractive index UV adhesive.The optical field can be significantly shrunk by the facet lens so as to obtain improved optical coupling.Numerical simulations were carried out for different coupling conditions,on both fundamental mode and highorder mode,for a nine-mode fiber.The fundamental mode area can be reduced from 152.17 to 12.57μm^(~2),and the coupling loss between the fiber lens and a photonic waveguide can be reduced to-2.9 d B with over 1000 nm 3 d B bandwidth.展开更多
基金Youth Science and Technology Research Foundation of Shanxi Province(No.2015021104)Programs for Science and Technology Development of Shanxi Province(No.201703D121028-2)
文摘This paper introduces the application of a slant lens fiber in a reflective fiber optical displacement sensor, namely the receiving fiber use the slant lens fiber. Based on the characteristic formula expression of the intensity modulation of planar single fiber pair, a mathematic model of single fiber fair intensity modulation is established. After simulation experiment, the influence of fiber spacing, fiber core diameter and fiber numerical aperture on the modulation characteristics of the sensor is summarized.
文摘The beams of 980nm high-power LDs are analyzed, and the reasons that aspect ratio of LD beams is high are explained. It is certified by the test that cylindrical lens can efficiently compress the perpendicular divergence angle of the beam. Some typical and popular lensed fibers were compared and analyzed according to coupling characteristics. The factors which affect the coupling efficiency and tolerance of the wedged-shaped GRIN tipped lensed fiber are pointed out, and some methods to reduce the coupling loss of the lensed fibers are proposed finally.
基金the National Key R&D Program of China(No.2018YFB1801804)the National Natural Science Foundation of China(NSFC)(Nos.61935011,61875124,and 61675128).
文摘We report a low-fabrication-complexity and wideband fiber lens,which is formed by fiber facet etching and filling high refractive index UV adhesive.The optical field can be significantly shrunk by the facet lens so as to obtain improved optical coupling.Numerical simulations were carried out for different coupling conditions,on both fundamental mode and highorder mode,for a nine-mode fiber.The fundamental mode area can be reduced from 152.17 to 12.57μm^(~2),and the coupling loss between the fiber lens and a photonic waveguide can be reduced to-2.9 d B with over 1000 nm 3 d B bandwidth.