We have developed a novel optical fiber ring laser using a semiconductor optical amplifier (SOA) as the gain medium, and taking advantage of polarization anisotropy of its gain. The frequency difference of the bi-dire...We have developed a novel optical fiber ring laser using a semiconductor optical amplifier (SOA) as the gain medium, and taking advantage of polarization anisotropy of its gain. The frequency difference of the bi-directional laser is controlled by birefringence which is introduced in the ring laser cavity. The beat frequency generated by combining two counter-propagating oscillations is proportional to the birefringence, the fiber ring laser of the present study is, therefore, applicable to the fiber sensor. The sensing signal is obtained in a frequency domain with the material which causes the retardation change by a physical phenomenon to be measured. For the application to stress sensing, the present laser was investigated with a photoelastic material.展开更多
A simple and cost-effective multi-wavelength fiber ring laser based on a chirped Moire fiber grating (CMFG) and a semiconductor optical amplifier (SOA) is proposed. Stable triple-wavelength lasing oscillations at ...A simple and cost-effective multi-wavelength fiber ring laser based on a chirped Moire fiber grating (CMFG) and a semiconductor optical amplifier (SOA) is proposed. Stable triple-wavelength lasing oscillations at room temperature are experimentally demonstrated. The measured optical signal-to-noise ratio (SNR) reaches the highest value of 50 dB and the power fluctuation of each wavelength is less than 0.2 dB within a 1-h period. To serve as a wavelength selective element, the CMFG possesses excellent comb-like filtering characteristics including stable wavelength interval and ultra-narrow passband, and its fabrication method is easy and flexible. The lasing oscillation shows a narrower bandwidth than SOA-based multi-wavelength fiber lasers utilizing some other kinds of wavelength selective components. Methods to optimize the laser performance are also discussed.展开更多
We report on a compact passive mode-locked Er:fiber ring laser operated at the fundamental repetition rate of 517 MHz, which we believe is the highest fundamental repetition rate ever reported in a ring cavity fiber l...We report on a compact passive mode-locked Er:fiber ring laser operated at the fundamental repetition rate of 517 MHz, which we believe is the highest fundamental repetition rate ever reported in a ring cavity fiber laser.The key technique is the employment of two innovative high-power wavelength domain multiplexer collimators with all gain fiber cavity suited for the high power(up to 2 W) pumping. The laser is featured with a direct chirpfree output pulse, which is 97 fs without extracavity compression at an average output power of 90 mW.展开更多
A simple configuration for the generation of a switchable dual-wavelength fiber ring laser is presented.The proposed configuration employs a short twin-core photonic crystal fiber acting as a Mach–Zehnder interferome...A simple configuration for the generation of a switchable dual-wavelength fiber ring laser is presented.The proposed configuration employs a short twin-core photonic crystal fiber acting as a Mach–Zehnder interferometer at room temperature.A polarization controller is further utilized to enable switchable dualwavelength operation.展开更多
The pulse dynamics of harmonic mode-locking in a dissipative soliton resonance(DSR) region in an erbiumdoped fiber ring laser is investigated at different values of anomalous dispersion. The fiber laser is mode-locked...The pulse dynamics of harmonic mode-locking in a dissipative soliton resonance(DSR) region in an erbiumdoped fiber ring laser is investigated at different values of anomalous dispersion. The fiber laser is mode-locked by a nonlinear polarization rotation technique. By inserting 0–200 m anomalous dispersion single-mode fiber in the laser cavity, the cavity length is changed from 17.3 to 217.3 m, and the corresponding dispersion of the cavity ranges from -0.27 to-4.67 ps^2. The observed results show that the tuning range of repetition rate under a harmonic DSR condition is highly influenced by the cavity dispersion. Furthermore, it is found that, by automatically adjusting their harmonic orders, the lasers can work at certain values of repetition rate, which are independent of the cavity length and dispersion. The pulses at the same repetition rate in different laser configurations have similar properties, demonstrating that each achievable repetition rate represents an operation regime of harmonic DSR lasers.展开更多
The proposed technique demonstrates a fiber ring resonator interrogated by an optical time domain reflectometer(OTDR),for intensity sensing.By using this methodology,a cavity round trip time of 2.85ms was obtained.For...The proposed technique demonstrates a fiber ring resonator interrogated by an optical time domain reflectometer(OTDR),for intensity sensing.By using this methodology,a cavity round trip time of 2.85ms was obtained.For a proof of concept,a long-period grating was inserted in the resonant cavity operating as a curvature sensing device.A novel signal processing approach was outlined,regarding to the logarithmic behavior of the OTDR.Through analyzing the experimental results,an increase in the measured sensitivities was obtained by increasing applied bending.With curvatures performed from 1.8 m^(-1) to 4.5 m^(-1),the sensitivity values ranged from 2.94 dB·km^(-1) to 5.15 dB·km^(-1).In its turn,the sensitivities obtained presented a linear behavior when studied as a function of the applied curvature,following a slope of 0.86×10-3 dB.The advantages of applying this technique were also discussed,demonstrating two similar fiber rings multiplexed in a series of configurations.展开更多
We propose to generate controllable time delay using slow/fast light in fiber ring resonators with gain manipulation.The dispersion and group delay of active fiber ring resonator can be controlled by manipulating its ...We propose to generate controllable time delay using slow/fast light in fiber ring resonators with gain manipulation.The dispersion and group delay of active fiber ring resonator can be controlled by manipulating its gain level below the lasing threshold.Controllability of the negative group delay in the undercoupled regime and the positive group delay in the overcoupled regime is theoretically demonstrated.Besides,large group delay can be obtained accompanied by signal gain in active ring resonators.In addition,we describe wide bandwidth and large group delay in 4-stage cascaded ring resonators.展开更多
All optical clock recovery from non return-to-zero (NRZ) data using an semiconductor optical amplifier (SOA) loop mirror and a mode-locked SOA fibcr lascr is firstly schematically explained and experimentally demo...All optical clock recovery from non return-to-zero (NRZ) data using an semiconductor optical amplifier (SOA) loop mirror and a mode-locked SOA fibcr lascr is firstly schematically explained and experimentally demonstrated at 10 Gb/s. Furthermore, the pulse quality of tile recovered cluck is cffcctivcly improved by using a continuous-wave (CW) assist light in the gain region of SOA, through which the amplitude modulation is reduced from 57.2% to 8.47%. This scheme is a promising method for clock recovery from NRZ data in the future all-optical communication networks.展开更多
We report a high power and widely tunable erbium-doped fiber (EDF) ring laser using 1480nm pump and high concentration EDF. Large tuning range up to 105nm (1513-1618 nm) has been obtained by optimizing of the EDF length.
A novel approach for measuring the nonlinear refractive index of an optical fiber utlizing the bistable behavior of the double coupling optical fiber ring resonator was proposed and investigated. The switch-off or swi...A novel approach for measuring the nonlinear refractive index of an optical fiber utlizing the bistable behavior of the double coupling optical fiber ring resonator was proposed and investigated. The switch-off or switch-on power decreases with an increase in the nonlinear refractive index n2 (m2/W), and the dependence of swith-off or switch-on power on the nonlinear refractive index was analyzed numerically. Simulation results showed that the switch-off power and switch-on power (in dBW) decreased linearly with loglo (n2) in a 100-m-length fiber ring resonator, when n2 changed from 3.2 ×10^-20 m2/W to 2.5 × 10^-17 m2/W or nearly n2 = 3.2 × 10^-20 m2/W. These mean that high accuracy as well as large-scale nonlinear refractive index measurement can be achieved by the proposed approach.展开更多
A tunable dual-wavelength fiber ring laser with a Fabry-Perot laser diode is proposed and demonstrated. The dual-wavelength outputs have the optical side-mode-suppression-ratio (SMSR) over 31 dB. The wavelength tuning...A tunable dual-wavelength fiber ring laser with a Fabry-Perot laser diode is proposed and demonstrated. The dual-wavelength outputs have the optical side-mode-suppression-ratio (SMSR) over 31 dB. The wavelength tuning range can be up to 9 run.展开更多
This paper proposed and experimentally demonstrated an all-fiber tunable and programmable bandpass filter using a linearly chirped fiber Bragg grating (CFBG). The center wavelength and spacing of the transmission pe...This paper proposed and experimentally demonstrated an all-fiber tunable and programmable bandpass filter using a linearly chirped fiber Bragg grating (CFBG). The center wavelength and spacing of the transmission peaks could be independently tuned via computer. The tunable range is about 18 rim. With this filter we demonstrated a tunable fiber ring laser which has an output power of about -7 dBm, full-width at half- maximum linewidth of-0.017 nm which is limited by the resolution of the optical spectrum analyzer (OSA). Furthermore, a spacing tunable dual-wavelength fiber laser was achieved with the same setup. This all-fiber laser features advantages like simple structure, low cost, flexible and digital tuning capability.展开更多
A new micro-vibration sensor based on single-mode fiber ring laser is put forward. The Mach-Zehnder interferometric (MZI) detection technique is presented for interrogating laser frequency shift due to the measurand...A new micro-vibration sensor based on single-mode fiber ring laser is put forward. The Mach-Zehnder interferometric (MZI) detection technique is presented for interrogating laser frequency shift due to the measurand (piezoelectric transducer (PZT) is used to simulate the micro-vibration) induced laser cavity strain from both single- and multi-mode lasers. In the experiment, compared with multi-mode laser sensors, the single-mode laser sensor is proved to be a sensor with high resolution. When the PZT is driven by the analog signal (0.03 rad near 2 kHz), the signal-to-noise ratio (SNR) of output signal from the single-mode laser sensor is close to 55 dB and the sensitivity of the sensor is about 5 ×10^-5 rad/Hz1/2.展开更多
A simplified ring cavity for achieving a unidirectional room temperature multi-wavelength erbium-doped fiber ring laser without optical isolator is demonstrated. The fiber ring cavity is built in such a way that the o...A simplified ring cavity for achieving a unidirectional room temperature multi-wavelength erbium-doped fiber ring laser without optical isolator is demonstrated. The fiber ring cavity is built in such a way that the optical fields propagating in two directions suffer different losses caused by one sampled fiber Bragg grating. Furthermore, simultaneous multi-wavelength lasing with 0.8-nm intervals is demonstrated with sinusoidal phase modulation just before the sampled fiber Bragg grating to prevent single-wavelength lasing and unstable wavelength oscillation.展开更多
A couple of simple-structure phase modulators were used in active mode-locked fiber laser to implement repetition rate continuous tuning. The laser produces pulse as short as 5.7 ps whose repetition rate tuning can co...A couple of simple-structure phase modulators were used in active mode-locked fiber laser to implement repetition rate continuous tuning. The laser produces pulse as short as 5.7 ps whose repetition rate tuning can cover the spacing of the adjoining order mode-locking frequencies.展开更多
A novel method for fabricating dual-wavelength fiber Bragg gratings (FBGs) by using one phase mask is developed. The method is based on a double-exposure technique. Our technique lends itself to writing gratings with ...A novel method for fabricating dual-wavelength fiber Bragg gratings (FBGs) by using one phase mask is developed. The method is based on a double-exposure technique. Our technique lends itself to writing gratings with controllable reflectivity and separation of two Bragg wavelengths. A grating with two equal transmission peaks of 20.25 dB is obtained by this method and the separation of the two Bragg wavelengths is about 0.8 nm. With the grating, we demonstrate a dual-wavelength erbium-doped fiber ring laser whose interval of the two peaks is 0.8 nm. The laser’s peak powers can get 3.1 mW above and have a good stability.展开更多
A novel hybrid air-core photonic band-gap fiber(PBF) ring resonator with twin 90° polarization-axis rotated splices is proposed and demonstrated. Frist, we measure the temperature dependent birefringence coeffici...A novel hybrid air-core photonic band-gap fiber(PBF) ring resonator with twin 90° polarization-axis rotated splices is proposed and demonstrated. Frist, we measure the temperature dependent birefringence coefficient of air-core PBF and Panda fiber. Experimental results show that the relative temperature dependent birefringence coefficient of air-core PBF is 1.42×10^(-8)/℃, which is typically ~16 times less than that of Panda fiber. Then, we extract the geometry profile of air-core PBF from scanning electron microscope(SEM) images. Numerical modal is built to distinguish the fast axis and slow axis in the fiber. By precisely setting the length difference in air-core PBF and Panda fiber between two 90° polarization-axis rotated splicing points, the hybrid air-core PBF ring resonator is constructed, and the finesse of the resonator is 8.4. Environmental birefringence variation induced by temperature change can be well compensated, and experimental results show an 18-fold reduction in thermal sensitivity, compared with resonator with twin 0° polarization-axis rotated splices.展开更多
Erbium fiber grating ring laser (EFRL) witn an integrated travelling wave and low polarization mode noise is reported. Through modulated experiment of a successful 2.488 Gb/s RZ data, it is shown that the EFRL is a pr...Erbium fiber grating ring laser (EFRL) witn an integrated travelling wave and low polarization mode noise is reported. Through modulated experiment of a successful 2.488 Gb/s RZ data, it is shown that the EFRL is a promising alternative to DFB lasers for high-speed transmission applications.展开更多
A compact and stable all-normal-dispersion mode-locked ring fiber laser with the repetition rate of 312 MHz is obtained with a wavelength-division multiplexing isolator. The compressed pulse is nearly transform-limite...A compact and stable all-normal-dispersion mode-locked ring fiber laser with the repetition rate of 312 MHz is obtained with a wavelength-division multiplexing isolator. The compressed pulse is nearly transform-limited and the pulse width is 118 fs. It exhibits an optical efficiency of 50% and the maximum output power is about 205 mW with a 410 mW pump.展开更多
A high-efficiency Brillouin fiber ring laser is demonstrated using the standard single-mode fiber. The laser exhibits a 3.6-mW threshold. The output power is 22 mW with 40-mW pump power, and the maximum optical-to-opt...A high-efficiency Brillouin fiber ring laser is demonstrated using the standard single-mode fiber. The laser exhibits a 3.6-mW threshold. The output power is 22 mW with 40-mW pump power, and the maximum optical-to-optical efficiency is 5570. The output is single wavelength with a 3-dB linewidth of 5 MHz, and the interval of center frequency between the laser and the pump light is 11 GHz (0.088 nm). It is shown that the stimulated Brillouin scattering threshold of ring resonator is lower and the energy transfer efficiency is higher than those in fiber.展开更多
文摘We have developed a novel optical fiber ring laser using a semiconductor optical amplifier (SOA) as the gain medium, and taking advantage of polarization anisotropy of its gain. The frequency difference of the bi-directional laser is controlled by birefringence which is introduced in the ring laser cavity. The beat frequency generated by combining two counter-propagating oscillations is proportional to the birefringence, the fiber ring laser of the present study is, therefore, applicable to the fiber sensor. The sensing signal is obtained in a frequency domain with the material which causes the retardation change by a physical phenomenon to be measured. For the application to stress sensing, the present laser was investigated with a photoelastic material.
基金supported by the National Natural Science Foundation of China (No.60771008)the National "863" Program of China (No.2007AA01Z258)+1 种基金the Support Plan for New Century Excellent Talents (No.NCET-05-0091)the Science Fund of Beijing Jiaotong University (No.2007XM003)
文摘A simple and cost-effective multi-wavelength fiber ring laser based on a chirped Moire fiber grating (CMFG) and a semiconductor optical amplifier (SOA) is proposed. Stable triple-wavelength lasing oscillations at room temperature are experimentally demonstrated. The measured optical signal-to-noise ratio (SNR) reaches the highest value of 50 dB and the power fluctuation of each wavelength is less than 0.2 dB within a 1-h period. To serve as a wavelength selective element, the CMFG possesses excellent comb-like filtering characteristics including stable wavelength interval and ultra-narrow passband, and its fabrication method is easy and flexible. The lasing oscillation shows a narrower bandwidth than SOA-based multi-wavelength fiber lasers utilizing some other kinds of wavelength selective components. Methods to optimize the laser performance are also discussed.
基金supported by the Major National Basic Research Program of China (2013CB922401)the National Natural Science Foundation of China (60927010, 10974006, and 11027404)
文摘We report on a compact passive mode-locked Er:fiber ring laser operated at the fundamental repetition rate of 517 MHz, which we believe is the highest fundamental repetition rate ever reported in a ring cavity fiber laser.The key technique is the employment of two innovative high-power wavelength domain multiplexer collimators with all gain fiber cavity suited for the high power(up to 2 W) pumping. The laser is featured with a direct chirpfree output pulse, which is 97 fs without extracavity compression at an average output power of 90 mW.
基金Financial support for this work was provided by the Deanship of Scientific Research(DSR)of King Fahd University of Petroleum and Minerals under Grant No.FT121004
文摘A simple configuration for the generation of a switchable dual-wavelength fiber ring laser is presented.The proposed configuration employs a short twin-core photonic crystal fiber acting as a Mach–Zehnder interferometer at room temperature.A polarization controller is further utilized to enable switchable dualwavelength operation.
基金National Natural Science Foundation of China(NSFC)(61435003,61421002,61327004,61377042,61505024,61378028)Science and Technology Project of Sichuan Province(2016JY0102)
文摘The pulse dynamics of harmonic mode-locking in a dissipative soliton resonance(DSR) region in an erbiumdoped fiber ring laser is investigated at different values of anomalous dispersion. The fiber laser is mode-locked by a nonlinear polarization rotation technique. By inserting 0–200 m anomalous dispersion single-mode fiber in the laser cavity, the cavity length is changed from 17.3 to 217.3 m, and the corresponding dispersion of the cavity ranges from -0.27 to-4.67 ps^2. The observed results show that the tuning range of repetition rate under a harmonic DSR condition is highly influenced by the cavity dispersion. Furthermore, it is found that, by automatically adjusting their harmonic orders, the lasers can work at certain values of repetition rate, which are independent of the cavity length and dispersion. The pulses at the same repetition rate in different laser configurations have similar properties, demonstrating that each achievable repetition rate represents an operation regime of harmonic DSR lasers.
基金This work is financed by National Funds through the Portuguese funding agency,FCT-“Fundação para a Ciência e a Tecnologia”under Grant No.UID/EEA/50014/2019.
文摘The proposed technique demonstrates a fiber ring resonator interrogated by an optical time domain reflectometer(OTDR),for intensity sensing.By using this methodology,a cavity round trip time of 2.85ms was obtained.For a proof of concept,a long-period grating was inserted in the resonant cavity operating as a curvature sensing device.A novel signal processing approach was outlined,regarding to the logarithmic behavior of the OTDR.Through analyzing the experimental results,an increase in the measured sensitivities was obtained by increasing applied bending.With curvatures performed from 1.8 m^(-1) to 4.5 m^(-1),the sensitivity values ranged from 2.94 dB·km^(-1) to 5.15 dB·km^(-1).In its turn,the sensitivities obtained presented a linear behavior when studied as a function of the applied curvature,following a slope of 0.86×10-3 dB.The advantages of applying this technique were also discussed,demonstrating two similar fiber rings multiplexed in a series of configurations.
基金supported by the National Natural Science Foundation of China (Grant No. 61168002)the Provincial Natural Science Foundation of Jiangxi (Grant No. 20132BAB201048)+1 种基金the Science & Technology Project of Science & Technology of Yichun Committee (Grant No. JXYC2013-KGA01)the Opening Foundation of the State Key Laboratory of Advanced Optical Communication Systems and Networks (Grant No.2011GZKF031105)
文摘We propose to generate controllable time delay using slow/fast light in fiber ring resonators with gain manipulation.The dispersion and group delay of active fiber ring resonator can be controlled by manipulating its gain level below the lasing threshold.Controllability of the negative group delay in the undercoupled regime and the positive group delay in the overcoupled regime is theoretically demonstrated.Besides,large group delay can be obtained accompanied by signal gain in active ring resonators.In addition,we describe wide bandwidth and large group delay in 4-stage cascaded ring resonators.
基金This work was supported by the National Natural Sci-ence Foundation of China (No. 90401025)the Key Project of MOE (No. 105036).
文摘All optical clock recovery from non return-to-zero (NRZ) data using an semiconductor optical amplifier (SOA) loop mirror and a mode-locked SOA fibcr lascr is firstly schematically explained and experimentally demonstrated at 10 Gb/s. Furthermore, the pulse quality of tile recovered cluck is cffcctivcly improved by using a continuous-wave (CW) assist light in the gain region of SOA, through which the amplitude modulation is reduced from 57.2% to 8.47%. This scheme is a promising method for clock recovery from NRZ data in the future all-optical communication networks.
文摘We report a high power and widely tunable erbium-doped fiber (EDF) ring laser using 1480nm pump and high concentration EDF. Large tuning range up to 105nm (1513-1618 nm) has been obtained by optimizing of the EDF length.
文摘A novel approach for measuring the nonlinear refractive index of an optical fiber utlizing the bistable behavior of the double coupling optical fiber ring resonator was proposed and investigated. The switch-off or switch-on power decreases with an increase in the nonlinear refractive index n2 (m2/W), and the dependence of swith-off or switch-on power on the nonlinear refractive index was analyzed numerically. Simulation results showed that the switch-off power and switch-on power (in dBW) decreased linearly with loglo (n2) in a 100-m-length fiber ring resonator, when n2 changed from 3.2 ×10^-20 m2/W to 2.5 × 10^-17 m2/W or nearly n2 = 3.2 × 10^-20 m2/W. These mean that high accuracy as well as large-scale nonlinear refractive index measurement can be achieved by the proposed approach.
文摘A tunable dual-wavelength fiber ring laser with a Fabry-Perot laser diode is proposed and demonstrated. The dual-wavelength outputs have the optical side-mode-suppression-ratio (SMSR) over 31 dB. The wavelength tuning range can be up to 9 run.
基金Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant No. 61107087) and the National High Technology Research and Development Program of China (863 Program) (No. SS2012AA010407).
文摘This paper proposed and experimentally demonstrated an all-fiber tunable and programmable bandpass filter using a linearly chirped fiber Bragg grating (CFBG). The center wavelength and spacing of the transmission peaks could be independently tuned via computer. The tunable range is about 18 rim. With this filter we demonstrated a tunable fiber ring laser which has an output power of about -7 dBm, full-width at half- maximum linewidth of-0.017 nm which is limited by the resolution of the optical spectrum analyzer (OSA). Furthermore, a spacing tunable dual-wavelength fiber laser was achieved with the same setup. This all-fiber laser features advantages like simple structure, low cost, flexible and digital tuning capability.
基金supported by the Technological Fund of Outstanding Youth of Anhui Province under Contract No.08040106903
文摘A new micro-vibration sensor based on single-mode fiber ring laser is put forward. The Mach-Zehnder interferometric (MZI) detection technique is presented for interrogating laser frequency shift due to the measurand (piezoelectric transducer (PZT) is used to simulate the micro-vibration) induced laser cavity strain from both single- and multi-mode lasers. In the experiment, compared with multi-mode laser sensors, the single-mode laser sensor is proved to be a sensor with high resolution. When the PZT is driven by the analog signal (0.03 rad near 2 kHz), the signal-to-noise ratio (SNR) of output signal from the single-mode laser sensor is close to 55 dB and the sensitivity of the sensor is about 5 ×10^-5 rad/Hz1/2.
文摘A simplified ring cavity for achieving a unidirectional room temperature multi-wavelength erbium-doped fiber ring laser without optical isolator is demonstrated. The fiber ring cavity is built in such a way that the optical fields propagating in two directions suffer different losses caused by one sampled fiber Bragg grating. Furthermore, simultaneous multi-wavelength lasing with 0.8-nm intervals is demonstrated with sinusoidal phase modulation just before the sampled fiber Bragg grating to prevent single-wavelength lasing and unstable wavelength oscillation.
文摘A couple of simple-structure phase modulators were used in active mode-locked fiber laser to implement repetition rate continuous tuning. The laser produces pulse as short as 5.7 ps whose repetition rate tuning can cover the spacing of the adjoining order mode-locking frequencies.
文摘A novel method for fabricating dual-wavelength fiber Bragg gratings (FBGs) by using one phase mask is developed. The method is based on a double-exposure technique. Our technique lends itself to writing gratings with controllable reflectivity and separation of two Bragg wavelengths. A grating with two equal transmission peaks of 20.25 dB is obtained by this method and the separation of the two Bragg wavelengths is about 0.8 nm. With the grating, we demonstrate a dual-wavelength erbium-doped fiber ring laser whose interval of the two peaks is 0.8 nm. The laser’s peak powers can get 3.1 mW above and have a good stability.
基金supported by the National Natural Science Foundation of China(No.61473022)
文摘A novel hybrid air-core photonic band-gap fiber(PBF) ring resonator with twin 90° polarization-axis rotated splices is proposed and demonstrated. Frist, we measure the temperature dependent birefringence coefficient of air-core PBF and Panda fiber. Experimental results show that the relative temperature dependent birefringence coefficient of air-core PBF is 1.42×10^(-8)/℃, which is typically ~16 times less than that of Panda fiber. Then, we extract the geometry profile of air-core PBF from scanning electron microscope(SEM) images. Numerical modal is built to distinguish the fast axis and slow axis in the fiber. By precisely setting the length difference in air-core PBF and Panda fiber between two 90° polarization-axis rotated splicing points, the hybrid air-core PBF ring resonator is constructed, and the finesse of the resonator is 8.4. Environmental birefringence variation induced by temperature change can be well compensated, and experimental results show an 18-fold reduction in thermal sensitivity, compared with resonator with twin 0° polarization-axis rotated splices.
文摘Erbium fiber grating ring laser (EFRL) witn an integrated travelling wave and low polarization mode noise is reported. Through modulated experiment of a successful 2.488 Gb/s RZ data, it is shown that the EFRL is a promising alternative to DFB lasers for high-speed transmission applications.
基金supported by the National Natural Science Foundation of China(Nos.61250017,61377044,61275186,and 11204011)the National Basic Research Program of China(No.2013CB934304)
文摘A compact and stable all-normal-dispersion mode-locked ring fiber laser with the repetition rate of 312 MHz is obtained with a wavelength-division multiplexing isolator. The compressed pulse is nearly transform-limited and the pulse width is 118 fs. It exhibits an optical efficiency of 50% and the maximum output power is about 205 mW with a 410 mW pump.
文摘A high-efficiency Brillouin fiber ring laser is demonstrated using the standard single-mode fiber. The laser exhibits a 3.6-mW threshold. The output power is 22 mW with 40-mW pump power, and the maximum optical-to-optical efficiency is 5570. The output is single wavelength with a 3-dB linewidth of 5 MHz, and the interval of center frequency between the laser and the pump light is 11 GHz (0.088 nm). It is shown that the stimulated Brillouin scattering threshold of ring resonator is lower and the energy transfer efficiency is higher than those in fiber.