The umbilical cable is a vital component of subsea production systems that provide power,chemical agents,control signals et al.,and its requirement for reliability is exceedingly high.However,as the umbilical cable is...The umbilical cable is a vital component of subsea production systems that provide power,chemical agents,control signals et al.,and its requirement for reliability is exceedingly high.However,as the umbilical cable is a composite structure comprising multiple functional units,the reliability analysis of such cables involves numerous parameters that can impact calculation efficiency.In this paper,the reliability analysis of a new kind of umbilical cable with carbon fiber rod under tension is analyzed.The global dynamic analytical model is first established to determine the maximum tension load,then the local analytical model of umbilical cable including each unit are constructed by finite element method(FEM).Based on the mechanical analytical model,the reliability of umbilical cable under tension load is studied using response surface method(RSM)and Monte Carlo method.During the calculation process,a new tangent plane sampling method to calculate the response surface function(RSF)is proposed in this paper,which could make sampling points faster come close to the RSF curve,and it is proved that the calculation efficiency increases about 33%comparing with traditional method.展开更多
A mode-locked ytterbium-doped rod-type fiber laser with 85 ~tm core diameter is developed based on the nonlinear polarization evolution in an all-normal-dispersion ring cavity, in which a uniaxial birefringent plate i...A mode-locked ytterbium-doped rod-type fiber laser with 85 ~tm core diameter is developed based on the nonlinear polarization evolution in an all-normal-dispersion ring cavity, in which a uniaxial birefringent plate is used as the spectral filter. Average power up to 16 W is obtained at the repetition rate of 58 MHz, and the pulse duration is compressed to 182 fs with a grating-pair compressor. The output laser pulses show very good beam quality and power stability.展开更多
基金Financial support for this research was provided by the National Natural Science Foundation of China (Grant No.52222111)。
文摘The umbilical cable is a vital component of subsea production systems that provide power,chemical agents,control signals et al.,and its requirement for reliability is exceedingly high.However,as the umbilical cable is a composite structure comprising multiple functional units,the reliability analysis of such cables involves numerous parameters that can impact calculation efficiency.In this paper,the reliability analysis of a new kind of umbilical cable with carbon fiber rod under tension is analyzed.The global dynamic analytical model is first established to determine the maximum tension load,then the local analytical model of umbilical cable including each unit are constructed by finite element method(FEM).Based on the mechanical analytical model,the reliability of umbilical cable under tension load is studied using response surface method(RSM)and Monte Carlo method.During the calculation process,a new tangent plane sampling method to calculate the response surface function(RSF)is proposed in this paper,which could make sampling points faster come close to the RSF curve,and it is proved that the calculation efficiency increases about 33%comparing with traditional method.
基金supported by the National Key Technology R&D Program of the Ministry of Science and Technology,China(Grant No.2012BAC23B03)the National Basic Research Program of China(Grant No.2013CB922401)the National Natural Science Foundation of China(Grant No.11474002)
文摘A mode-locked ytterbium-doped rod-type fiber laser with 85 ~tm core diameter is developed based on the nonlinear polarization evolution in an all-normal-dispersion ring cavity, in which a uniaxial birefringent plate is used as the spectral filter. Average power up to 16 W is obtained at the repetition rate of 58 MHz, and the pulse duration is compressed to 182 fs with a grating-pair compressor. The output laser pulses show very good beam quality and power stability.