The computation resources at a single node in Edge Computing(EC)are commonly limited,which cannot execute large scale computation tasks.To face the challenge,an Offloading scheme leveraging on NEighboring node Resourc...The computation resources at a single node in Edge Computing(EC)are commonly limited,which cannot execute large scale computation tasks.To face the challenge,an Offloading scheme leveraging on NEighboring node Resources(ONER)for EC over Fiber-Wireless(FiWi)access networks is proposed in this paper.In the ONER scheme,the FiWi network connects edge computing nodes with fiber and converges wireless and fiber connections seamlessly,so that it can support the offloading transmission with low delay and wide bandwidth.Based on the ONER scheme supported by FiWi networks,computation tasks can be offloaded to edge computing nodes in a wider range of area without increasing wireless hops(e.g.,just one wireless hop),which achieves low delay.Additionally,an efficient Computation Resource Scheduling(CRS)algorithm based on the ONER scheme is also proposed to make offloading decision.The results show that more offloading requests can be satisfied and the average completion time of computation tasks decreases significantly with the ONER scheme and the CRS algorithm.Therefore,the ONER scheme and the CRS algorithm can schedule computation resources at neighboring edge computing nodes for offloading to meet the challenge of large scale computation tasks.展开更多
We propose an access network that integrates fiber and wireless for mobile fronthaul(MFH)with simple protection capabilities,using dualmode orbital angular momentum(OAM)multiplexing.We experimentally demonstrate a 3.3...We propose an access network that integrates fiber and wireless for mobile fronthaul(MFH)with simple protection capabilities,using dualmode orbital angular momentum(OAM)multiplexing.We experimentally demonstrate a 3.35 Gbit/s DMT-32QAM preequalized system with 10 km and 15 km fiber links in the 5.9 GHz band;then there is a link of two channels with a 0.5 m wireless link.展开更多
Fiber-wireless(FiWi) access networks, which are a combination of fiber networks and wireless networks,have the advantages of both networks, such as high bandwidth, high security, low cost, and flexible access. However...Fiber-wireless(FiWi) access networks, which are a combination of fiber networks and wireless networks,have the advantages of both networks, such as high bandwidth, high security, low cost, and flexible access. However,with the increasing need for bandwidth and types of service from users, FiWi networks are still relatively incapable and ossified. To alleviate bandwidth tension and facilitate new service deployment, we attempt to apply network virtualization in FiWi networks, in which the network's control plane and data plane are separated from each other.Based on a previously proposed hierarchical model and service model for FiWi network virtualization, the process of service implementation is described. The performances of the FiWi access networks applying network virtualization are analyzed in detail, including bandwidth for links, throughput for nodes, and multipath flow transmission.Simulation results show that the FiWi network with virtualization is superior to that without.展开更多
基金supported by National Natural Science Foundation of China(Grant No.61471053,61901052)Fundamental Research Funds for the Central Universities(Grant 2018RC03)Beijing Laboratory of Advanced Information Networks
文摘The computation resources at a single node in Edge Computing(EC)are commonly limited,which cannot execute large scale computation tasks.To face the challenge,an Offloading scheme leveraging on NEighboring node Resources(ONER)for EC over Fiber-Wireless(FiWi)access networks is proposed in this paper.In the ONER scheme,the FiWi network connects edge computing nodes with fiber and converges wireless and fiber connections seamlessly,so that it can support the offloading transmission with low delay and wide bandwidth.Based on the ONER scheme supported by FiWi networks,computation tasks can be offloaded to edge computing nodes in a wider range of area without increasing wireless hops(e.g.,just one wireless hop),which achieves low delay.Additionally,an efficient Computation Resource Scheduling(CRS)algorithm based on the ONER scheme is also proposed to make offloading decision.The results show that more offloading requests can be satisfied and the average completion time of computation tasks decreases significantly with the ONER scheme and the CRS algorithm.Therefore,the ONER scheme and the CRS algorithm can schedule computation resources at neighboring edge computing nodes for offloading to meet the challenge of large scale computation tasks.
基金supported by ZTE Industry-Academia-Research Cooperation Funds under Grant No.2016ZTE04-01.
文摘We propose an access network that integrates fiber and wireless for mobile fronthaul(MFH)with simple protection capabilities,using dualmode orbital angular momentum(OAM)multiplexing.We experimentally demonstrate a 3.35 Gbit/s DMT-32QAM preequalized system with 10 km and 15 km fiber links in the 5.9 GHz band;then there is a link of two channels with a 0.5 m wireless link.
基金Project supported by the National Natural Science Foundation of China(Nos.61240040 and 61471053)
文摘Fiber-wireless(FiWi) access networks, which are a combination of fiber networks and wireless networks,have the advantages of both networks, such as high bandwidth, high security, low cost, and flexible access. However,with the increasing need for bandwidth and types of service from users, FiWi networks are still relatively incapable and ossified. To alleviate bandwidth tension and facilitate new service deployment, we attempt to apply network virtualization in FiWi networks, in which the network's control plane and data plane are separated from each other.Based on a previously proposed hierarchical model and service model for FiWi network virtualization, the process of service implementation is described. The performances of the FiWi access networks applying network virtualization are analyzed in detail, including bandwidth for links, throughput for nodes, and multipath flow transmission.Simulation results show that the FiWi network with virtualization is superior to that without.