期刊文献+
共找到3,790篇文章
< 1 2 190 >
每页显示 20 50 100
减蛋综合征病毒抗体胶体金免疫层析试纸条的研制及初步应用
1
作者 宋亚鹏 孙亚宁 +4 位作者 刘琳 杨继飞 李新生 魏蔷 张改平 《河南农业科学》 北大核心 2024年第1期125-132,共8页
为建立快速检测减蛋综合征病毒(EDSV)抗体的方法,基于EDSV的Fiber蛋白,制备快速检测EDSV抗体的免疫层析试纸条,为养禽业提供针对病原微生物的感染预警及免疫评估。利用胶体金标记EDSV Fiber蛋白抗原为探针,将羊抗鸡IgG和抗Fiber蛋白的... 为建立快速检测减蛋综合征病毒(EDSV)抗体的方法,基于EDSV的Fiber蛋白,制备快速检测EDSV抗体的免疫层析试纸条,为养禽业提供针对病原微生物的感染预警及免疫评估。利用胶体金标记EDSV Fiber蛋白抗原为探针,将羊抗鸡IgG和抗Fiber蛋白的抗体包被到硝酸纤维膜上,分别作为质控线和检测线,对家禽EDSV抗体水平进行监测。结果表明,制备的EDSV免疫层析试纸条具有高度特异性,与其他家禽病毒抗体无交叉反应,仅与EDSV抗体反应,在试纸条上产生可见的检测线;并且制备的试纸条具有高度稳定性,在室温条件下可至少保存6个月。应用制备的检测EDSV抗体的免疫层析试纸条对从河南、安徽、山东等地养鸡场采集的576份鸡血清样本检测,与血凝抑制试验(HI)结果进行平行比较,二者的Kappa值为0.878,具有良好一致性。综上,制备的检测ESDV抗体的免疫层析试纸条具有高度的特异性、敏感性、稳定性和易操作性,对EDSV抗体的临床检测具有实际应用价值。 展开更多
关键词 减蛋综合征病毒 Fiber蛋白 免疫层析试纸 血凝抑制试验
下载PDF
On the generation of high-quality Nyquist pulses in mode-locked fiber lasers
2
作者 任俞宣 葛锦蔓 +2 位作者 李小军 彭俊松 曾和平 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期424-427,共4页
Nyquist pulses have wide applications in many areas,from electronics to optics.Mode-locked lasers are ideal platforms to generate such pulses.However,how to generate high-quality Nyquist pulses in mode-locked lasers r... Nyquist pulses have wide applications in many areas,from electronics to optics.Mode-locked lasers are ideal platforms to generate such pulses.However,how to generate high-quality Nyquist pulses in mode-locked lasers remains elusive.We address this problem by managing different physical effects in mode-locked fiber lasers through extensive numerical simulations.We find that net dispersion,linear loss,gain and filter shaping can affect the quality of Nyquist pulses significantly.We also demonstrate that Nyquist pulses experience similariton shaping due to the nonlinear attractor effect in the gain medium.Our work may contribute to the design of Nyquist pulse sources and enrich the understanding of pulse shaping dynamics in mode-locked lasers. 展开更多
关键词 mode locking LASER SOLITON FIBER PULSE
下载PDF
Optical Nonlinearity of Violet Phosphorus and Applications in Fiber Lasers
3
作者 杨慧苒 齐梦婷 +5 位作者 李旭鹏 薛泽 鲁晨浩 成嘉伟 韩冬冬 李璐 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第1期16-20,共5页
A D-shaped fiber is coated with a new two-dimensional nanomaterial,violet phosphorus(VP),to create a saturable absorber(SA)with a modulation depth of 3.68%.Subsequently,the SA is inserted into a fiber laser,enabling s... A D-shaped fiber is coated with a new two-dimensional nanomaterial,violet phosphorus(VP),to create a saturable absorber(SA)with a modulation depth of 3.68%.Subsequently,the SA is inserted into a fiber laser,enabling successful generation of dark solitons and bright–dark soliton pairs through adjustment of the polarization state within the cavity.Through further study,mode-locked pulses are achieved,proving the existence of polarization-locked vector solitons.The results indicate that VP can be used as a polarization-independent SA. 展开更多
关键词 POLARIZATION FIBER ABSORBER
下载PDF
The NAC transcription factor LuNAC61 negatively regulates fiber development in flax (Linum usitatissimum L.)
4
作者 Dongwei Xie Jing Li +5 位作者 Wan Li Lijun Sun Zhigang Dai Wenzhi Zhou Jianguang Su Jian Sun 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第3期795-805,共11页
Flax is a crucial fiber crop that exhibits excellent textile properties and serves as a model plant for investigating phloem fiber development. The regulation of multiple genes significantly influences fiber developme... Flax is a crucial fiber crop that exhibits excellent textile properties and serves as a model plant for investigating phloem fiber development. The regulation of multiple genes significantly influences fiber development, notably involving NAC(NAM, ATAF1/2, CUC2) transcription factors in forming the fiber secondary cell wall(SCW).Overexpression of LuNAC61 in flax resulted in sparse top meristematic zone leaves and significantly reduced stem cellulose content. Scanning electron microscopy and staining observations revealed a significant reduction in fiber bundles. β-Glucuronidase(GUS) staining analysis demonstrated high activity of the LuNAC61 promoter in the bast fibers of the flax stem. Additionally, several members of the LuPLATZ and LuCesA families exhibited significant coexpression with LuNAC61. Subcellular localization indicated the presence of LuPLATZ24 protein in the nucleus and cytoplasm, LuNAC61 protein exclusively in the nucleus, and LuCesA10 in the nucleus and endoplasmic reticulum. LuPLATZ24 positively regulates LuNAC61, whereas LuNAC61 negatively affects LuCesA10, suggesting the involvement of a metabolic network in regulating flax fiber development. In conclusion, this study provides a critical opportunity for a comprehensive and in-depth analysis of the mechanisms governing flax fiber development and the potential use of biotechnology to enhance flax fiber yield. 展开更多
关键词 FLAX fiber development Lu NAC61 gene function gene interaction
下载PDF
70 Gbps PAM-4850-nm oxide-confined VCSEL without equalization and pre-emphasis
5
作者 Anjin Liu Bao Tang +1 位作者 Zhiyong Li Wanhua Zheng 《Journal of Semiconductors》 EI CAS CSCD 2024年第5期5-7,共3页
Directly modulated 850-nm vertical-cavity surface-emitting lasers(VCSELs)with the advantages of low cost,high modulation speed,good reliability,and low power consumption,are the key sources in the optical interconnect... Directly modulated 850-nm vertical-cavity surface-emitting lasers(VCSELs)with the advantages of low cost,high modulation speed,good reliability,and low power consumption,are the key sources in the optical interconnects with multimode fibers for the supercomputers,data centers,and machine learning applications[1−3].Typically,non-return-tozero(NRZ)modulation format is used. 展开更多
关键词 RETURN CONFINED fibers
下载PDF
Pathophysiological changes of muscle after ischemic stroke:a secondary consequence of stroke injury
6
作者 Hu Qi Dan Tian +2 位作者 Fei Luan Ruocong Yang Nan Zeng 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期737-746,共10页
Sufficient clinical evidence suggests that the damage caused by ischemic stroke to the body occurs not only in the acute phase but also during the recovery period,and that the latter has a greater impact on the long-t... Sufficient clinical evidence suggests that the damage caused by ischemic stroke to the body occurs not only in the acute phase but also during the recovery period,and that the latter has a greater impact on the long-term prognosis of the patient.However,current stroke studies have typically focused only on lesions in the central nervous system,ignoring secondary damage caused by this disease.Such a phenomenon arises from the slow progress of pathophysiological studies examining the central nervous system.Further,the appropriate therapeutic time window and benefits of thrombolytic therapy are still controversial,leading scholars to explore more pragmatic intervention strategies.As treatment measures targeting limb symptoms can greatly improve a patient’s quality of life,they have become a critical intervention strategy.As the most vital component of the limbs,skeletal muscles have become potential points of concern.Despite this,to the best of our knowledge,there are no comprehensive reviews of pathophysiological changes and potential treatments for post-stroke skeletal muscle.The current review seeks to fill a gap in the current understanding of the pathological processes and mechanisms of muscle wasting atrophy,inflammation,neuroregeneration,mitochondrial changes,and nutritional dysregulation in stroke survivors.In addition,the challenges,as well as the optional solutions for individualized rehabilitation programs for stroke patients based on motor function are discussed. 展开更多
关键词 inflammation ischemic stroke MITOCHONDRIA muscle atrophy muscle fiber muscle nutrition quality of life rehabilitation UBIQUITIN
下载PDF
Vitamin A regulates mitochondrial biogenesis and function through p38 MAPK‑PGC‑1α signaling pathway and alters the muscle fiber composition of sheep
7
作者 Pengkang Song Jiamin Zhao +5 位作者 Fanqinyu Li Xiaoyi Zhao Jinxin Feng Yuan Su Bo Wang Junxing Zhao 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第2期898-910,共13页
Background Vitamin A(VA)and its metabolite,retinoic acid(RA),are of great interest for their wide range of physiological functions.However,the regulatory contribution of VA to mitochondrial and muscle fiber compositio... Background Vitamin A(VA)and its metabolite,retinoic acid(RA),are of great interest for their wide range of physiological functions.However,the regulatory contribution of VA to mitochondrial and muscle fiber composition in sheep has not been reported.Method Lambs were injected with 0(control)or 7,500 IU VA palmitate into the biceps femoris muscle on d 2 after birth.At the age of 3 and 32 weeks,longissimus dorsi(LD)muscle samples were obtained to explore the effect of VA on myofiber type composition.In vitro,we investigated the effects of RA on myofiber type composition and intrinsic mechanisms.Results The proportion of type I myofiber was greatly increased in VA-treated sheep in LD muscle at harvest.VA greatly promoted mitochondrial biogenesis and function in LD muscle of sheep.Further exploration revealed that VA elevated PGC-1αmRNA and protein contents,and enhanced the level of p38 MAPK phosphorylation in LD muscle of sheep.In addition,the number of type I myofibers with RA treatment was significantly increased,and type IIx myofibers was significantly decreased in primary myoblasts.Consistent with in vivo experiment,RA significantly improved mitochondrial biogenesis and function in primary myoblasts of sheep.We then used si-PGC-1αto inhibit PGC-1αexpression and found that si-PGC-1αsignificantly abrogated RA-induced the formation of type I myofibers,mitochondrial biogenesis,MitoTracker staining intensity,UQCRC1 and ATP5A1 expression,SDH activity,and enhanced the level of type IIx muscle fibers.These data suggested that RA improved mitochondrial biogenesis and function by promoting PGC-1αexpression,and increased type I myofibers.In order to prove that the effect of RA on the level of PGC-1αis caused by p38 MAPK signaling,we inhibited the p38 MAPK signaling using a p38 MAPK inhibitor,which significantly reduced RA-induced PGC-1αand MyHC I levels.Conclusion VA promoted PGC-1αexpression through the p38 MAPK signaling pathway,improved mitochondrial biogenesis,and altered the composition of muscle fiber type. 展开更多
关键词 MITOCHONDRIA Muscle fiber type PGC-1Α p38 MAPK Retinoic acid Vitamin A
下载PDF
Experimental and numerical analyses of the effect of fibre content on the close-in blast performance of a UHPFRC beam
8
作者 Junbo Yan Qiyue Zhang +4 位作者 Yan Liu Yingliang Xu Zhenqing Shi Fan Bai Fenglei Huang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期242-261,共20页
Limited research has been conducted on the influences of fiber content on close-in blasting characteristics for ultrahigh-performance fiber-reinforced concrete(UHPFRC)beams.This paper aims to address this knowledge ga... Limited research has been conducted on the influences of fiber content on close-in blasting characteristics for ultrahigh-performance fiber-reinforced concrete(UHPFRC)beams.This paper aims to address this knowledge gap through experimental and mesoscale numerical methods.Experiments were conducted on ten UHPFRC beams built with varying steel fiber volumetric fractions subjected to close-in explosive conditions.Additionally,this study considered other parameters,such as the longitudinal reinforcement type and ratio.In the case of UHPFRC beams featuring normal-strength longitudinal reinforcement of diametersΦ12,Φ16,andΦ20,a reduction in maximum displacement by magnitudes of19.6%,19.5%,and 17.4%was observed,respectively,as the volumetric fractions of fiber increased from1.0%to 2.5%.In addition,increasing the longitudinal reinforcement ratio and using high-strength steel longitudinal reinforcement both significantly reduced the deformation characteristics and increase the blasting resistances of UHPFRC beams.However,the effects on the local crushing and spalling damage were not significant.A mesoscale finite element model,which considers the impacts of fiber parameters on UHPFRC beam behaviors,was also established and well correlated with the test findings.Nevertheless,parametric analyses were further conducted to examine the impacts of the steel fiber content and length and the hybrid effects of various types of microfibers and steel fibers on the blasting performance of UHPFRC beams. 展开更多
关键词 Blast performance Close-in blast Fiber content Mesoscale approach UHPFRC beams
下载PDF
Anti-abrasion collagen fiber-based membrane functionalized by UiO-66-NH_(2)with ultra-high efficiency and stability for oil-in-water emulsions separation
9
作者 Xiaoxia Ye Rixin Huang +3 位作者 Zhihong Zheng Juan Liu Jie Chen Yuancai Lv 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期285-297,共13页
Membrane separation strategies offer promising platform for the emulsion separation.However,the low mechanical strength of membrane separation layers and the trade-off between separation flux and efficiency present si... Membrane separation strategies offer promising platform for the emulsion separation.However,the low mechanical strength of membrane separation layers and the trade-off between separation flux and efficiency present significant challenges.In this study,we report a CFM@UiO-66-NH_(2)membrane with high separation flux,efficiency and stability,through utilizing a robust anti-abrasion collagen fiber membrane(CFM)as the multifunctional support and UiO-66-NH_(2)by an in-situ growth as the separation layer.The high mechanical strength of the CFM compensated for the weakness of the separation layer,while the charge-breaking effect of UiO-66-NH_(2),along with the size sieving of its constituent separating layers and the capillary effect of the collagen fibers,contributed to the potential for efficient separation.Additionally,the CFM@UiO-66-NH_(2)membrane exhibited superhydrophilic properties,making it suitable for separating oil-in-water microemulsions and nanoemulsions stabilized by anionic surfactants.The membrane demonstrated remarkable separation efficiencies of up to 99.960%and a separation flux of370.05 L·m^(-2)·h^(-1).Moreover,it exhibits stability,durability,and abrasion resistance,maintaining excellent separation performance even when exposed to strong acids and alkalis without any damage to its structure and performance.After six cycles of reuse,it achieved a separation flux of 417.97 L·m^(-2)·h^(-1)and a separation efficiency of 99.747%.Furthermore,after undergoing 500 cycles of strong abrasion,the separation flux remained at 124.39 L·m^(-2)·h^(-1),with a separation efficiency of 99.992%.These properties make it suitable for the long-term use in harsh operating environments.We attribute these properties to the electrostatic effect resulting from the amino group on UiO-66-NH_(2)and its in-situ growth on the CFM,which forms a size-screening separation layer.Our work highlights the potential of the CFM@UiO-66-NH_(2)membrane as an environmentally friendly size-screening material for the efficient emulsion wastewater separation. 展开更多
关键词 Collagen fibers Metal-organic frameworks Oil-in-water emulsion separation Size sieving
下载PDF
Optimizing Optical Fiber Faults Detection:A Comparative Analysis of Advanced Machine Learning Approaches
10
作者 Kamlesh Kumar Soothar Yuanxiang Chen +2 位作者 Arif Hussain Magsi Cong Hu Hussain Shah 《Computers, Materials & Continua》 SCIE EI 2024年第5期2697-2721,共25页
Efficient optical network management poses significant importance in backhaul and access network communicationfor preventing service disruptions and ensuring Quality of Service(QoS)satisfaction.The emerging faultsin o... Efficient optical network management poses significant importance in backhaul and access network communicationfor preventing service disruptions and ensuring Quality of Service(QoS)satisfaction.The emerging faultsin optical networks introduce challenges that can jeopardize the network with a variety of faults.The existingliterature witnessed various partial or inadequate solutions.On the other hand,Machine Learning(ML)hasrevolutionized as a promising technique for fault detection and prevention.Unlike traditional fault managementsystems,this research has three-fold contributions.First,this research leverages the ML and Deep Learning(DL)multi-classification system and evaluates their accuracy in detecting six distinct fault types,including fiber cut,fibereavesdropping,splicing,bad connector,bending,and PC connector.Secondly,this paper assesses the classificationdelay of each classification algorithm.Finally,this work proposes a fiber optics fault prevention algorithm thatdetermines to mitigate the faults accordingly.This work utilized a publicly available fiber optics dataset namedOTDR_Data and applied different ML classifiers,such as Gaussian Naive Bayes(GNB),Logistic Regression(LR),Support Vector Machine(SVM),K-Nearest Neighbor(KNN),Random Forest(RF),and Decision Tree(DT).Moreover,Ensemble Learning(EL)techniques are applied to evaluate the accuracy of various classifiers.In addition,this work evaluated the performance of DL-based Convolutional Neural Network and Long-Short Term Memory(CNN-LSTM)hybrid classifier.The findings reveal that the CNN-LSTM hybrid technique achieved the highestaccuracy of 99%with a delay of 360 s.On the other hand,EL techniques improved the accuracy in detecting fiberoptic faults.Thus,this research comprehensively assesses accuracy and delay metrics for various classifiers andproposes the most efficient attack detection system in fiber optics. 展开更多
关键词 Fiber optics fault detection multiclassification machine learning ensemble learning
下载PDF
Coaxial Wet Spinning of Boron Nitride Nanosheet‑Based Composite Fibers with Enhanced Thermal Conductivity and Mechanical Strength
11
作者 Wenjiang Lu Qixuan Deng +3 位作者 Minsu Liu Baofu Ding Zhiyuan Xiong Ling Qiu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期126-138,共13页
Hexagonal boron nitride nanosheets(BNNSs)exhibit remarkable thermal and dielectric properties.However,their self-assembly and alignment in macroscopic forms remain challenging due to the chemical inertness of boron ni... Hexagonal boron nitride nanosheets(BNNSs)exhibit remarkable thermal and dielectric properties.However,their self-assembly and alignment in macroscopic forms remain challenging due to the chemical inertness of boron nitride,thereby limiting their performance in applications such as thermal management.In this study,we present a coaxial wet spinning approach for the fabrication of BNNSs/polymer composite fibers with high nanosheet orientation.The composite fibers were prepared using a superacid-based solvent system and showed a layered structure comprising an aramid core and an aramid/BNNSs sheath.Notably,the coaxial fibers exhibited significantly higher BNNSs alignment compared to uniaxial aramid/BNNSs fibers,primarily due to the additional compressive forces exerted at the core-sheath interface during the hot drawing process.With a BNNSs loading of 60 wt%,the resulting coaxial fibers showed exceptional properties,including an ultrahigh Herman orientation parameter of 0.81,thermal conductivity of 17.2 W m^(-1)K^(-1),and tensile strength of 192.5 MPa.These results surpassed those of uniaxial fibers and previously reported BNNSs composite fibers,making them highly suitable for applications such as wearable thermal management textiles.Our findings present a promising strategy for fabricating high-performance composite fibers based on BNNSs. 展开更多
关键词 Boron nitride nanosheets Coaxial fiber Interfacial compression Nanosheet aligning Wearable thermal management
下载PDF
Coherent optical frequency transfer via 972-km fiber link
12
作者 邓雪 张翔 +8 位作者 臧琦 焦东东 王丹 刘杰 高静 许冠军 董瑞芳 刘涛 张首刚 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期277-282,共6页
We demonstrate coherent optical frequency dissemination over a distance of 972 km by cascading two spans where the phase noise is passively compensated for.Instead of employing a phase discriminator and a phase lockin... We demonstrate coherent optical frequency dissemination over a distance of 972 km by cascading two spans where the phase noise is passively compensated for.Instead of employing a phase discriminator and a phase locking loop in the conventional active phase control scheme,the passive phase noise cancellation is realized by feeding double-trip beat-note frequency to the driver of the acoustic optical modulator at the local site.This passive scheme exhibits fine robustness and reliability,making it suitable for long-distance and noisy fiber links.An optical regeneration station is used in the link for signal amplification and cascaded transmission.The phase noise cancellation and transfer instability of the 972-km link is investigated,and transfer instability of 1.1×10^(-19)at 10^(4)s is achieved.This work provides a promising method for realizing optical frequency distribution over thousands of kilometers by using fiber links. 展开更多
关键词 optical frequency transfer fiber link phase noise cancellation
下载PDF
Mechanical behaviour of fiber-reinforced grout in rock bolt reinforcement
13
作者 Yingchun Li Ammar Ahmed Danqi Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期437-453,共17页
Grouted rock bolts subject to axial loading in the field exhibit various failure modes,among which the most predominant one is the bolt-grout interface failure.Thus,mechanical characterization of the grout is essentia... Grouted rock bolts subject to axial loading in the field exhibit various failure modes,among which the most predominant one is the bolt-grout interface failure.Thus,mechanical characterization of the grout is essential for understanding its performance in ground support.To date,few studies have been conducted to characterize the mechanical behaviour of fiber-reinforced grout(FRG)in rock bolt reinforcement.Here we experimentally studied the mechanical behaviour of FRG under uniaxial compression,indirect tension,and direct shear loading conditions.We also conducted a series of pullout tests of rebar bolt encapsulated with different grouts including conventional cementitious grout and FRG.FRG was developed using 15%silica fume(SF)replacement of cement(by weight)and steel fiber to achieve highstrength and crack-resistance to overcome drawbacks of the conventional grout.Two types of steel fibers including straight and wavy steel fibers were further added to enhance the grout quality.The effect of fiber shape and fiber volume proportion on the grout mechanical properties were examined.Our experimental results showed that the addition of SF and steel fiber by 1.5%fiber volume proportion could lead to the highest compressive,tensile,and shear strengths of the grout.The minimum volume of fiber that could improve the mechanical properties of grout was found at 0.5%.The scanning electron microscopy(SEM)analysis demonstrated that steel fibers act as an excellent bridge to prevent the cracks from propagating at the interfacial region and hence to aid in maintaining the integrity of the cementitious grout.Our laboratory pullout tests further confirmed that FRG could prevent the cylindrical grout annulus from radial crack and hence improve the rebar’s load carrying capacity.Therefore,FRG has a potential to be utilized in civil and mining applications where high-strength and crack-resistance support is required. 展开更多
关键词 Fiber-reinforced grout(FRG) Steel fibers Mechanical properties Direct shear test Pullout test
下载PDF
Relationship of Retinal Nerve Fiber Layer Thickness and Retinal Vessel Calibers with Cognitive Impairment in the Asymptomatic Polyvascular Abnormalities Population
14
作者 WANG Dan Dan WANG An Xin +3 位作者 ZHANG Xiao Li WEI Wen Bin WU Shou Ling ZHAO Xing Quan 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2024年第2期196-203,共8页
Objective Cognitive impairment(CI)in older individuals has a high morbidity rate worldwide,with poor diagnostic methods and susceptible population identification.This study aimed to investigate the relationship betwee... Objective Cognitive impairment(CI)in older individuals has a high morbidity rate worldwide,with poor diagnostic methods and susceptible population identification.This study aimed to investigate the relationship between different retinal metrics and CI in a particular population,emphasizing polyvascular status.Methods We collected information from the Asymptomatic Polyvascular Abnormalities Community Study on retinal vessel calibers,retinal nerve fiber layer(RNFL)thickness,and cognitive function of 3,785participants,aged 40 years or older.Logistic regression was used to analyze the relationship between retinal metrics and cognitive function.Subgroups stratified by different vascular statuses were also analyzed.Results RNFL thickness was significantly thinner in the CI group(odds ratio:0.973,95%confidence interval:0.953–0.994).In the subgroup analysis,the difference still existed in the non-intracranial arterial stenosis,non-extracranial carotid arterial stenosis,and peripheral arterial disease subgroups(P<0.05).Conclusion A thin RNFL is associated with CI,especially in people with non-large vessel stenosis.The underlying small vessel change in RNFL and CI should be investigated in the future. 展开更多
关键词 Retinal nerve fiber layer Cognitive impairment Polyvascular abnormality
下载PDF
Experimental investigation of engineered geopolymer composite for structural strengthening against blast loads
15
作者 Shan Liu Chunyuan Liu +3 位作者 Yifei Hao Yi Zhang Li Chen Zhan Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期496-509,共14页
The recent increase in blast/bombing incidents all over the world has pushed the development of effective strengthening approaches to enhance the blast resistance of existing civil infrastructures.Engineered geopolyme... The recent increase in blast/bombing incidents all over the world has pushed the development of effective strengthening approaches to enhance the blast resistance of existing civil infrastructures.Engineered geopolymer composite(EGC)is a promising material featured by eco-friendly,fast-setting and strain-hardening characteristics for emergent strengthening and construction.However,the fiber optimization for preparing EGC and its protective effect on structural elements under blast scenarios are uncertain.In this study,laboratory tests were firstly conducted to evaluate the effects of fiber types on the properties of EGC in terms of workability,dry shrinkage,and mechanical properties in compression,tension and flexure.The experimental results showed that EGC containing PE fiber exhibited suitable workability,acceptable dry shrinkage and superior mechanical properties compared with other types of fibers.After that,a series of field tests were carried out to evaluate the effectiveness of EGC retrofitting layer on the enhancement of blast performance of typical elements.The tests include autoclaved aerated concrete(AAC)masonry walls subjected to vented gas explosion,reinforced AAC panels subjected to TNT explosion and plain concrete slabs subjected to contact explosion.It was found that EGC could effectively enhance the blast resistance of structural elements in different scenarios.For AAC masonry walls and panels,with the existence of EGC,the integrity of specimens could be maintained,and their deflections and damage were significantly reduced.For plain concrete slabs,the EGC overlay could reduce the diameter and depth of the crater and spallation of specimens. 展开更多
关键词 Engineered geopolymer composites Fiber optimization Strengthening material Blast resistance Masonry wall Reinforced AAC panel Plain concrete slab
下载PDF
Carbon Fiber Breakage Mechanism in Aluminum(Al)/Carbon Fibers(CFs) Composite Sheet during Accumulative Roll Bonding(ARB) Process
16
作者 胡淑芬 SUN Zhenzhong +3 位作者 SHEN Fanghua DENG Jun 杨卫平 杨浩坤 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期167-173,共7页
We put forward a method of fabricating Aluminum(Al)/carbon fibers(CFs) composite sheets by the accumulative roll bonding(ARB) method. The finished Al/CFs composite sheet has CFs and pure Al sheets as sandwich and surf... We put forward a method of fabricating Aluminum(Al)/carbon fibers(CFs) composite sheets by the accumulative roll bonding(ARB) method. The finished Al/CFs composite sheet has CFs and pure Al sheets as sandwich and surface layers. After cross-section observation of the Al/CFs composite sheet, we found that the CFs discretely distributed within the sandwich layer. Besides, the tensile test showed that the contribution of the sandwich CFs layer to tensile strength was less than 11% compared with annealed pure Al sheet. With ex-situ observation of the CFs breakage evolution with-16%,-32%, and-45% rolling reduction during the ARB process, the plastic instability of the Al layer was found to bring shear damages to the CFs. At last, the bridging strengthening mechanism introduced by CFs was sacrificed. We provide new insight into and instruction on Al/CFs composite sheet preparation method and processing parameters. 展开更多
关键词 Al/CFs composite sheet accumulative roll bonding tensile strength plastic instability carbon fiber breakage
下载PDF
Thermo-hydro-poro-mechanical responses of a reservoir-induced landslide tracked by high-resolution fiber optic sensing nerves
17
作者 Xiao Ye Hong-Hu Zhu +4 位作者 Gang Cheng Hua-Fu Pei Bin Shi Luca Schenato Alessandro Pasuto 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期1018-1032,共15页
Thermo-poro-mechanical responses along sliding zone/surface have been extensively studied.However,it has not been recognized that the potential contribution of other crucial engineering geological interfaces beyond th... Thermo-poro-mechanical responses along sliding zone/surface have been extensively studied.However,it has not been recognized that the potential contribution of other crucial engineering geological interfaces beyond the slip surface to progressive failure.Here,we aim to investigate the subsurface multiphysics of reservoir landslides under two extreme hydrologic conditions(i.e.wet and dry),particularly within sliding masses.Based on ultra-weak fiber Bragg grating(UWFBG)technology,we employ specialpurpose fiber optic sensing cables that can be implanted into boreholes as“nerves of the Earth”to collect data on soil temperature,water content,pore water pressure,and strain.The Xinpu landslide in the middle reach of the Three Gorges Reservoir Area in China was selected as a case study to establish a paradigm for in situ thermo-hydro-poro-mechanical monitoring.These UWFBG-based sensing cables were vertically buried in a 31 m-deep borehole at the foot of the landslide,with a resolution of 1 m except for the pressure sensor.We reported field measurements covering the period 2021 and 2022 and produced the spatiotemporal profiles throughout the borehole.Results show that wet years are more likely to motivate landslide motions than dry years.The annual thermally active layer of the landslide has a critical depth of roughly 9 m and might move downward in warmer years.The dynamic groundwater table is located at depths of 9e15 m,where the peaked strain undergoes a periodical response of leap and withdrawal to annual hydrometeorological cycles.These interface behaviors may support the interpretation of the contribution of reservoir regulation to slope stability,allowing us to correlate them to local damage events and potential global destabilization.This paper also offers a natural framework for interpreting thermo-hydro-poro-mechanical signatures from creeping reservoir bank slopes,which may form the basis for a landslide monitoring and early warning system. 展开更多
关键词 Reservoir landslide Thermo-hydro-poro-mechanical response Ultra-weak fiber bragg grating(UWFBG) subsurface evolution Engineering geological interface Geotechnical monitoring
下载PDF
Multi-Scale Design and Optimization of Composite Material Structure for Heavy-Duty Truck Protection Device
18
作者 Yanhui Zhang Lianhua Ma +3 位作者 Hailiang Su Jirong Qin Zhining Chen Kaibiao Deng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1961-1980,共20页
In this paper,to present a lightweight-developed front underrun protection device(FUPD)for heavy-duty trucks,plain weave carbon fiber reinforced plastic(CFRP)is used instead of the original high-strength steel.First,t... In this paper,to present a lightweight-developed front underrun protection device(FUPD)for heavy-duty trucks,plain weave carbon fiber reinforced plastic(CFRP)is used instead of the original high-strength steel.First,the mechanical and structural properties of plain carbon fiber composite anti-collision beams are comparatively analyzed from a multi-scale perspective.For studying the design capability of carbon fiber composite materials,we investigate the effects of TC-33 carbon fiber diameter(D),fiber yarn width(W)and height(H),and fiber yarn density(N)on the front underrun protective beam of carbon fiber compositematerials.Based on the investigation,a material-structure matching strategy suitable for the front underrun protective beam of heavy-duty trucks is proposed.Next,the composite material structure is optimized by applying size optimization and stack sequence optimization methods to obtain the higher performance carbon fiber composite front underrun protection beam of commercial vehicles.The results show that the fiber yarn height(H)has the greatest influence on the protective beam,and theH1matching scheme for the front underrun protective beamwith a carbon fiber composite structure exhibits superior performance.The proposed method achieves a weight reduction of 55.21% while still meeting regulatory requirements,which demonstrates its remarkable weight reduction effect. 展开更多
关键词 Structural optimization front underrun protection device carbon fiber reinforced plastic multi-scale model lightweight design
下载PDF
Broadband bidirectional Brillouin–Raman random fiber laser with ultra-narrow linewidth
19
作者 杨茜 李阳 +3 位作者 邹辉 梅杰 徐恩明 张祖兴 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期371-376,共6页
We present a Brillouin–Raman random fiber laser(BRRFL)with full-open linear cavity structure to generate broadband Brillouin frequency comb(BFC)with double Brillouin-frequency-shift spacing.The incorporation of a reg... We present a Brillouin–Raman random fiber laser(BRRFL)with full-open linear cavity structure to generate broadband Brillouin frequency comb(BFC)with double Brillouin-frequency-shift spacing.The incorporation of a regeneration portion consisting of an erbium-doped fiber and a single-mode fiber enables the generation of broadband BFC.The dynamics of broadband BFC generation changing with the pump power(EDF and Raman)and Brillouin pump(BP)wavelength are investigated in detail,respectively.Under suitable conditions,the bidirectional BRRFL proposed can produce a flatamplitude BFC with 40.7-nm bandwidth ranging from 1531 nm to 1571.7 nm,and built-in 242-order Brillouin Stokes lines(BSLs)with double Brillouin-frequency-shift spacing.Moreover,the linewidth of single BSL is experimentally measured to be about 2.5 kHz.The broadband bidirectional narrow-linewidth BRRFL has great potential applications in optical communication,optical sensing,spectral measurement,and so on. 展开更多
关键词 random laser fiber laser stimulated Brillouin scattering(SBS) stimulated Raman scattering(SRS)
下载PDF
GhWDL3 is involved in the formation and development of fiber cell morphology in upland cotton(Gossypium hirsutum L.)
20
作者 CHEN Baojun TIAN Zailong +9 位作者 FU Guoyong ZHANG Ai SUN Yaru WANG Jingjing PAN Zhaoe LI Hongge HU Daowu XIA Yingying HE Shoupu DU Xiongming 《Journal of Cotton Research》 CAS 2024年第1期58-68,共11页
Background Cotton fiber is a model tissue for studying microtubule-associated proteins(MAPs).The Xklp2(TPX2)proteins that belong to the novel MAPs member mainly participate in the formation and development of microtub... Background Cotton fiber is a model tissue for studying microtubule-associated proteins(MAPs).The Xklp2(TPX2)proteins that belong to the novel MAPs member mainly participate in the formation and development of microtubule(MT).However,there is a lack of studies concerning the systematic characterization of the TPX2 genes family in cotton.Therefore,the identification and portrayal of G.hirsutum TPX2 genes can provide key targets for molecular manipula-tion in the breeding of cotton fiber improvement.Result In this study,TPX2 family genes were classified into two distinct subclasses TPXLs and MAP genes WAVE DAMP-ENED2-LIKE(WDLs)and quite conservative in quantity.GhWDL3 was significantly up-regulated in 15 days post anthe-sis fibers of ZRI-015(an upland cotton with longer and stronger fiber).GhWDL3 promotes all stem hairs to become straight when overexpressed in Arabidopsis,which may indirectly regulate cotton fiber cell morphology during fiber development.Virus induced gene silencing(VIGS)results showed that GhWDL3 inhibited fiber cell elongation at fiber development periods through regulating the expression of cell wall related genes.Conclusion These results reveal that GhWDL3 regulated cotton fiber cell elongation and provide crucial information for the further investigation in the regulatory mechanisms/networks of cotton fiber length. 展开更多
关键词 Upland cotton GhWDL3 Fiber length TPX2 CYTOSKELETON Microtubule-associated proteins(MAPs)
下载PDF
上一页 1 2 190 下一页 到第
使用帮助 返回顶部