By studying the properties of Chebyshev polynomials, some specific and mean-ingful identities for the calculation of square of Chebyshev polynomials, Fibonacci numbersand Lucas numbers are obtained.
This note provides the some sum formulas for generalized Fibonacci numbers. The results are proved using clever rearrangements, rather than using induction.
Let us define to be a r-Toeplitz matrix. The entries in the first row of are or;where F<sub>n</sub> and L<sub>n</sub> denote the usual Fibonacci and Lucas numbers, respe...Let us define to be a r-Toeplitz matrix. The entries in the first row of are or;where F<sub>n</sub> and L<sub>n</sub> denote the usual Fibonacci and Lucas numbers, respectively. We obtained some bounds for the spectral norm of these matrices.展开更多
By applying the method of on summation by parts,the purpose of this paper is to give several reciprocal summations related to squares of products of the Fibonacci numbers.
In this paper we present some identities for the sums of squares of Fibonacci and Lucas numbers with consecutive primes, using maximal prime gap G(x)~log2x, as indices.
A survey of zoological literature affirmed the wide occurrence of Fibonacci numbers in the organization of acellular and prokaryotic life forms as well as in some eukaryotic protistans and in the embryonic development...A survey of zoological literature affirmed the wide occurrence of Fibonacci numbers in the organization of acellular and prokaryotic life forms as well as in some eukaryotic protistans and in the embryonic development and adult forms of many living and fossil remains of metazoan animals. A detailed comparative analysis of the axial skeleton of a fossil fish and humans revealed a new rule of the “nested triad” of bones organized along the proximal to distal axis of limb appendages. This growth pattern and its ubiquity among living vertebrates appear to underlie a profound rule of pattern formation that is dictated in part by the genetics and epigenetic mechanisms of stem cell clonal development.展开更多
In this paper we present combinatorial interpretations and polynomials generalizations for sequences including the Fibonacci numbers, the Pell numbers and the Jacobsthal numbers in terms of partitions. It is important...In this paper we present combinatorial interpretations and polynomials generalizations for sequences including the Fibonacci numbers, the Pell numbers and the Jacobsthal numbers in terms of partitions. It is important to mention that results of this nature were given by Santos and Ivkovic in two papers published on the Fibonacci Quarterly, Polynomial generalizations of the Pell sequence and the Fibonacci sequence [1] and Fibonacci Numbers and Partitions [2] , and one, by Santos, on Discrete Mathematics, On the Combinatorics of Polynomial generalizations of Rogers-Ramanujan Type Identities [3]. By these results one can see that from the q-series identities important combinatorial information can be obtained by a careful study of the two variable function introduced by Andrews in Combinatorics and Ramanujan's lost notebook [4].展开更多
Let us define A=Hr=(aij)?to be n×n?r-Hankel matrix. The entries of matrix A are Fn=Fi+j-2?or Ln=Fi+j-2?where Fn?and Ln?denote the usual Fibonacci and Lucas numbers, respectively. Then, we obtained upper and l...Let us define A=Hr=(aij)?to be n×n?r-Hankel matrix. The entries of matrix A are Fn=Fi+j-2?or Ln=Fi+j-2?where Fn?and Ln?denote the usual Fibonacci and Lucas numbers, respectively. Then, we obtained upper and lower bounds for the spectral norm of matrix A. We compared our bounds with exact value of matrix A’s spectral norm. These kinds of matrices have connections with signal and image processing, time series analysis and many other problems.展开更多
基金Supported by the Natural Science Foundation of Shaanxi Province(2002A11)Supported by the Shangluo Teacher's College Research Foundation(SKY2106)
文摘By studying the properties of Chebyshev polynomials, some specific and mean-ingful identities for the calculation of square of Chebyshev polynomials, Fibonacci numbersand Lucas numbers are obtained.
文摘This note provides the some sum formulas for generalized Fibonacci numbers. The results are proved using clever rearrangements, rather than using induction.
文摘Let us define to be a r-Toeplitz matrix. The entries in the first row of are or;where F<sub>n</sub> and L<sub>n</sub> denote the usual Fibonacci and Lucas numbers, respectively. We obtained some bounds for the spectral norm of these matrices.
基金Supported by the Natural Science Foundation of Henan Province(0511010300)Supported by the Natural Science Foundation of Education Department of Henan Province(2008B110011)
文摘By applying the method of on summation by parts,the purpose of this paper is to give several reciprocal summations related to squares of products of the Fibonacci numbers.
文摘In this paper we present some identities for the sums of squares of Fibonacci and Lucas numbers with consecutive primes, using maximal prime gap G(x)~log2x, as indices.
文摘A survey of zoological literature affirmed the wide occurrence of Fibonacci numbers in the organization of acellular and prokaryotic life forms as well as in some eukaryotic protistans and in the embryonic development and adult forms of many living and fossil remains of metazoan animals. A detailed comparative analysis of the axial skeleton of a fossil fish and humans revealed a new rule of the “nested triad” of bones organized along the proximal to distal axis of limb appendages. This growth pattern and its ubiquity among living vertebrates appear to underlie a profound rule of pattern formation that is dictated in part by the genetics and epigenetic mechanisms of stem cell clonal development.
基金Partially supported by FAPESP(Fundacao de Amparo a Pesquisa do Estado de Sao Paulo).
文摘In this paper we present combinatorial interpretations and polynomials generalizations for sequences including the Fibonacci numbers, the Pell numbers and the Jacobsthal numbers in terms of partitions. It is important to mention that results of this nature were given by Santos and Ivkovic in two papers published on the Fibonacci Quarterly, Polynomial generalizations of the Pell sequence and the Fibonacci sequence [1] and Fibonacci Numbers and Partitions [2] , and one, by Santos, on Discrete Mathematics, On the Combinatorics of Polynomial generalizations of Rogers-Ramanujan Type Identities [3]. By these results one can see that from the q-series identities important combinatorial information can be obtained by a careful study of the two variable function introduced by Andrews in Combinatorics and Ramanujan's lost notebook [4].
文摘Let us define A=Hr=(aij)?to be n×n?r-Hankel matrix. The entries of matrix A are Fn=Fi+j-2?or Ln=Fi+j-2?where Fn?and Ln?denote the usual Fibonacci and Lucas numbers, respectively. Then, we obtained upper and lower bounds for the spectral norm of matrix A. We compared our bounds with exact value of matrix A’s spectral norm. These kinds of matrices have connections with signal and image processing, time series analysis and many other problems.