In the central nervous system, the formation of fibrotic scar after injury inhibits axon regeneration and promotes repair. However, the mechanism underlying fibrotic scar formation and regulation remains poorly unders...In the central nervous system, the formation of fibrotic scar after injury inhibits axon regeneration and promotes repair. However, the mechanism underlying fibrotic scar formation and regulation remains poorly understood. M2 macrophages regulate fibrotic scar formation after injury to the heart, lung, kidney, and central nervous system. However, it remains to be clarified whether and how M2 macrophages regulate fibrotic scar formation after cerebral ischemia injury. In this study, we found that, in a rat model of cerebral ischemia induced by middle cerebral artery occlusion/reperfusion, fibrosis and macrophage infiltration were apparent in the ischemic core in the early stage of injury(within 14 days of injury). The number of infiltrated macrophages was positively correlated with fibronectin expression. Depletion of circulating monocyte-derived macrophages attenuated fibrotic scar formation. Interleukin 4(IL4) expression was strongly enhanced in the ischemic cerebral tissues, and IL4-induced M2 macrophage polarization promoted fibrotic scar formation in the ischemic core. In addition, macrophage-conditioned medium directly promoted fibroblast proliferation and the production of extracellular matrix proteins in vitro. Further pharmacological and genetic analyses showed that sonic hedgehog secreted by M2 macrophages promoted fibrogenesis in vitro and in vivo, and that this process was mediated by secretion of the key fibrosis-associated regulatory proteins transforming growth factor beta 1 and matrix metalloproteinase 9. Furthermore, IL4-afforded functional restoration on angiogenesis, cell apoptosis, and infarct volume in the ischemic core of cerebral ischemia rats were markedly impaired by treatment with an sonic hedgehog signaling inhibitor, paralleling the extent of fibrosis. Taken together, our findings show that IL4/sonic hedgehog/transforming growth factor beta 1 signaling targeting macrophages regulates the formation of fibrotic scar and is a potential therapeutic target for ischemic stroke.展开更多
The rapid formation of a glial/fibrotic scar is one of the main factors hampering axon growth after spinal cord injury. The bidirectional Eph B2/ephrin-B2 signaling of the fibroblast-astrocyte contact-dependent intera...The rapid formation of a glial/fibrotic scar is one of the main factors hampering axon growth after spinal cord injury. The bidirectional Eph B2/ephrin-B2 signaling of the fibroblast-astrocyte contact-dependent interaction is a trigger for glial/fibrotic scar formation. In the present study, a new in vitro model was produced by coculture of fibroblasts and astrocytes wounded by scratching to mimic glial/fibrotic scar-like structures using an improved slide system. After treatment with RNAi to downregulate Eph B2, changes in glial/fibrotic scar formation and the growth of VSC4.1 motoneuron axons were examined. Following RNAi treatment, fibroblasts and astrocytes dispersed without forming a glial/fibrotic scar-like structure. Furthermore, the expression levels of neurocan, NG2 and collagen I in the coculture were reduced, and the growth of VSC4.1 motoneuron axons was enhanced. These findings suggest that suppression of Eph B2 expression by RNAi attenuates the formation of a glial/fibrotic scar and promotes axon growth. This study was approved by the Laboratory Animal Ethics Committee of Jiangsu Province, China(approval No. 2019-0506-002) on May 6, 2019.展开更多
Monocytes,including monocyte-derived macrophages and resident microglia,mediate many phases of optic nerve injury pathogenesis.Resident microglia respond first,followed by infiltrating macrophages which regulate neuro...Monocytes,including monocyte-derived macrophages and resident microglia,mediate many phases of optic nerve injury pathogenesis.Resident microglia respond first,followed by infiltrating macrophages which regulate neuronal inflammation,cell proliferation and differentiation,scar formation and tissue remodeling following optic nerve injury.However,microglia and macrophages have distinct functions which can be either beneficial or detrimental to the optic nerve depending on the spatial context and temporal sequence of their activity.These divergent effects are attributed to pro-and anti-inflammatory cytokines expressed by monocytes,crosstalk between monocyte and glial cells and even microglia-macrophage communication.In this review,we describe the dynamics and functions of microglia and macrophages in neuronal inflammation and regeneration following optic nerve injury,and their possible role as therapeutic targets for axonal regeneration.展开更多
BACKGROUND:Transplantation of olfactory ensheathing cells (OECs) into the injured spinal cord has been shown to promote axonal regeneration and functional recovery.However,the mechanisms underlying the effects of O...BACKGROUND:Transplantation of olfactory ensheathing cells (OECs) into the injured spinal cord has been shown to promote axonal regeneration and functional recovery.However,the mechanisms underlying the effects of OEC transplantation remain controversial.OBJECTIVE:To observe fibrotic scar formation and axonal regeneration in the damaged spinal cord following OEC transplantation,and to determine whether OEC transplantation promotes neural regeneration by attenuating fibrotic scar formation.DESIGN,TIME AND SETTING:A randomized,controlled animal experiment was performed at the Department of Developmental Morphology,Tokyo Metropolitan Institute for Neuroscience,Fuchu,Japan and at the Department of Human Anatomy,College of Basic Medical Sciences,China Medical University,China between April 2007 and May 2009.MATERIALS:OECs were obtained from olfactory nerves and olfactory bulbs of male,4-week-old,Sprague Dawley rats.Rabbit anti-serotonin polyclonal antibody,rabbit anti-calcitonin gene-related peptide polyclonal antibody,rabbit anti-glial fibrillary acidic protein polyclonal antibody,rabbit anti-type IV collagen polyclonal antibody,and mouse anti-rat endothelial cell antigen-1 monoclonal antibody were used.METHODS:Male,Sprague Dawley rats aged 8 weeks were randomly divided into three groups:sham-surgery (n = 3),surgery (n = 9),and OEC transplantation (n = 11).Spinal cord transection at the T9-10 level was performed and the rats were transplanted with a 2-μL (1 × 105 cells) cell suspension.MAIN OUTCOME MEASURES:Formation of glial and fibrotic scars was examined using immunohistochemistry for glial fibrillary acidic protein and type IV collagen.Serotonin-positive and calcitonin gene-related peptide-positive axons were visualized by immunohistochemistry,respectively.Double immunofluorescence for type IV collagen and rat endothelial cell antigen-1 was also performed to determine co-localization of type IV collagen deposition and blood vessels.RESULTS:At 1 week after spinal cord injury,numerous glial cells were observed around the lesion site.Formation of fibrotic scar was determined by a large amount of type IV collagen deposition in the lesion center,and descending serotonin- or ascending calcitonin gene-related peptideconiaining axons stopped at the fibrotic scar that was formed in the lesion site.At week after transplantation,the formation of fibrotic scar was significantly inhibited.In addition,the fibrotic structure was partly formed and centralized in the blood vessel,and serotonergic and calcitonin gene-related peptide-containing axons were regenerated across the lesion site.CONCLUSION:OEC transplantation into the injured spinal cord attenuated fibrotic scar formation and promoted axon regeneration.展开更多
Traumatic injury to the adult mammalian central nervous system(CNS) leads to complex cellular responses. Among them, the scar tissue formed is generally recognized as a major obstacle to CNS repair, both by the prod...Traumatic injury to the adult mammalian central nervous system(CNS) leads to complex cellular responses. Among them, the scar tissue formed is generally recognized as a major obstacle to CNS repair, both by the production of inhibitory molecules and by the physical impedance of axon regrowth. Therefore, scar-modulating treatments have become a leading therapeutic intervention for CNS injury. To date, a variety of biological and pharmaceutical treatments, targeting scar modulation, have been tested in animal models of CNS injury, and a few are likely to enter clinical trials. In this review, we summarize current knowledge of the scar-modulating treatments according to their specific aims:(1) inhibition of glial and fibrotic scar formation, and(2) blockade of the production of scar-associated inhibitory molecules. The removal of existing scar tissue is also discussed as a treatment of choice. It is believed that only a combinatorial strategy is likely to help eliminate the detrimental effects of scar tissue on CNS repair.展开更多
基金supported by the National Natural Science Foundation of China,Nos.82171456 (to QY),81971229 (to QY)the Natural Science Foundation of Chongqing,No.cstc2021jcyj-msxmX0263 (to QY)the Postgraduate Research and Innovation Project of Chongqing,Nos.CYB20151 (to QY),CYS19182 (to YC)。
文摘In the central nervous system, the formation of fibrotic scar after injury inhibits axon regeneration and promotes repair. However, the mechanism underlying fibrotic scar formation and regulation remains poorly understood. M2 macrophages regulate fibrotic scar formation after injury to the heart, lung, kidney, and central nervous system. However, it remains to be clarified whether and how M2 macrophages regulate fibrotic scar formation after cerebral ischemia injury. In this study, we found that, in a rat model of cerebral ischemia induced by middle cerebral artery occlusion/reperfusion, fibrosis and macrophage infiltration were apparent in the ischemic core in the early stage of injury(within 14 days of injury). The number of infiltrated macrophages was positively correlated with fibronectin expression. Depletion of circulating monocyte-derived macrophages attenuated fibrotic scar formation. Interleukin 4(IL4) expression was strongly enhanced in the ischemic cerebral tissues, and IL4-induced M2 macrophage polarization promoted fibrotic scar formation in the ischemic core. In addition, macrophage-conditioned medium directly promoted fibroblast proliferation and the production of extracellular matrix proteins in vitro. Further pharmacological and genetic analyses showed that sonic hedgehog secreted by M2 macrophages promoted fibrogenesis in vitro and in vivo, and that this process was mediated by secretion of the key fibrosis-associated regulatory proteins transforming growth factor beta 1 and matrix metalloproteinase 9. Furthermore, IL4-afforded functional restoration on angiogenesis, cell apoptosis, and infarct volume in the ischemic core of cerebral ischemia rats were markedly impaired by treatment with an sonic hedgehog signaling inhibitor, paralleling the extent of fibrosis. Taken together, our findings show that IL4/sonic hedgehog/transforming growth factor beta 1 signaling targeting macrophages regulates the formation of fibrotic scar and is a potential therapeutic target for ischemic stroke.
基金supported by the Priority Academic Program Development of Jiangsu Higher Education Institutes of China(PAPD)the Science and Technology Plan Project of Nantong of China,No.JC2020026(to JW)the National Science Research of Jiangsu Higher Education Institutions of China,No.19KJB310012(to RYY)。
文摘The rapid formation of a glial/fibrotic scar is one of the main factors hampering axon growth after spinal cord injury. The bidirectional Eph B2/ephrin-B2 signaling of the fibroblast-astrocyte contact-dependent interaction is a trigger for glial/fibrotic scar formation. In the present study, a new in vitro model was produced by coculture of fibroblasts and astrocytes wounded by scratching to mimic glial/fibrotic scar-like structures using an improved slide system. After treatment with RNAi to downregulate Eph B2, changes in glial/fibrotic scar formation and the growth of VSC4.1 motoneuron axons were examined. Following RNAi treatment, fibroblasts and astrocytes dispersed without forming a glial/fibrotic scar-like structure. Furthermore, the expression levels of neurocan, NG2 and collagen I in the coculture were reduced, and the growth of VSC4.1 motoneuron axons was enhanced. These findings suggest that suppression of Eph B2 expression by RNAi attenuates the formation of a glial/fibrotic scar and promotes axon growth. This study was approved by the Laboratory Animal Ethics Committee of Jiangsu Province, China(approval No. 2019-0506-002) on May 6, 2019.
基金supported by NIH Center Core Grant P30EY014801a Research to Prevent Blindness Unrestrictea Grant+3 种基金partially supported by the Walter G.Ross Foundationpartly supported by the Gutierrez Family Research Fundthe Camiener Family Glaucoma Research Fundthe National Natural Science Foundation of China(No.82201170 to XL)。
文摘Monocytes,including monocyte-derived macrophages and resident microglia,mediate many phases of optic nerve injury pathogenesis.Resident microglia respond first,followed by infiltrating macrophages which regulate neuronal inflammation,cell proliferation and differentiation,scar formation and tissue remodeling following optic nerve injury.However,microglia and macrophages have distinct functions which can be either beneficial or detrimental to the optic nerve depending on the spatial context and temporal sequence of their activity.These divergent effects are attributed to pro-and anti-inflammatory cytokines expressed by monocytes,crosstalk between monocyte and glial cells and even microglia-macrophage communication.In this review,we describe the dynamics and functions of microglia and macrophages in neuronal inflammation and regeneration following optic nerve injury,and their possible role as therapeutic targets for axonal regeneration.
基金the National Natural Science Foundation of China,No.NSFC-30872669a Grant from Japan-China Medical Associationthe Scientific Research Foundation of Technology Department of Liaoning Province in China,No.20082113
文摘BACKGROUND:Transplantation of olfactory ensheathing cells (OECs) into the injured spinal cord has been shown to promote axonal regeneration and functional recovery.However,the mechanisms underlying the effects of OEC transplantation remain controversial.OBJECTIVE:To observe fibrotic scar formation and axonal regeneration in the damaged spinal cord following OEC transplantation,and to determine whether OEC transplantation promotes neural regeneration by attenuating fibrotic scar formation.DESIGN,TIME AND SETTING:A randomized,controlled animal experiment was performed at the Department of Developmental Morphology,Tokyo Metropolitan Institute for Neuroscience,Fuchu,Japan and at the Department of Human Anatomy,College of Basic Medical Sciences,China Medical University,China between April 2007 and May 2009.MATERIALS:OECs were obtained from olfactory nerves and olfactory bulbs of male,4-week-old,Sprague Dawley rats.Rabbit anti-serotonin polyclonal antibody,rabbit anti-calcitonin gene-related peptide polyclonal antibody,rabbit anti-glial fibrillary acidic protein polyclonal antibody,rabbit anti-type IV collagen polyclonal antibody,and mouse anti-rat endothelial cell antigen-1 monoclonal antibody were used.METHODS:Male,Sprague Dawley rats aged 8 weeks were randomly divided into three groups:sham-surgery (n = 3),surgery (n = 9),and OEC transplantation (n = 11).Spinal cord transection at the T9-10 level was performed and the rats were transplanted with a 2-μL (1 × 105 cells) cell suspension.MAIN OUTCOME MEASURES:Formation of glial and fibrotic scars was examined using immunohistochemistry for glial fibrillary acidic protein and type IV collagen.Serotonin-positive and calcitonin gene-related peptide-positive axons were visualized by immunohistochemistry,respectively.Double immunofluorescence for type IV collagen and rat endothelial cell antigen-1 was also performed to determine co-localization of type IV collagen deposition and blood vessels.RESULTS:At 1 week after spinal cord injury,numerous glial cells were observed around the lesion site.Formation of fibrotic scar was determined by a large amount of type IV collagen deposition in the lesion center,and descending serotonin- or ascending calcitonin gene-related peptideconiaining axons stopped at the fibrotic scar that was formed in the lesion site.At week after transplantation,the formation of fibrotic scar was significantly inhibited.In addition,the fibrotic structure was partly formed and centralized in the blood vessel,and serotonergic and calcitonin gene-related peptide-containing axons were regenerated across the lesion site.CONCLUSION:OEC transplantation into the injured spinal cord attenuated fibrotic scar formation and promoted axon regeneration.
基金supported by grants from the National Basic Research Development Program (973 Program) of China (2014CB542202)National High-Technology Research Program (863 Program) of China (2012AA020502)+1 种基金the National Natural Science Foundation of China (81130080)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions,Jiangsu Province,China
文摘Traumatic injury to the adult mammalian central nervous system(CNS) leads to complex cellular responses. Among them, the scar tissue formed is generally recognized as a major obstacle to CNS repair, both by the production of inhibitory molecules and by the physical impedance of axon regrowth. Therefore, scar-modulating treatments have become a leading therapeutic intervention for CNS injury. To date, a variety of biological and pharmaceutical treatments, targeting scar modulation, have been tested in animal models of CNS injury, and a few are likely to enter clinical trials. In this review, we summarize current knowledge of the scar-modulating treatments according to their specific aims:(1) inhibition of glial and fibrotic scar formation, and(2) blockade of the production of scar-associated inhibitory molecules. The removal of existing scar tissue is also discussed as a treatment of choice. It is believed that only a combinatorial strategy is likely to help eliminate the detrimental effects of scar tissue on CNS repair.