We want to conclude on the interest of the “crimping” process used to produce the glass wool and to make a comparison for anisotropic factor obtained from structural property (air permeability) as well as thermal pr...We want to conclude on the interest of the “crimping” process used to produce the glass wool and to make a comparison for anisotropic factor obtained from structural property (air permeability) as well as thermal property (thermal conductivity and diffusivity). The main structural (densities, porosity, specific surface, air permeability) and the thermal (conductivity, diffusivity, heat capacity) characteristics of this glass wool are presented. Thermal results are determined by using several methods (Hot disc (HD), Heat Flow Meter (HFM) and Guarded Hot Plate).展开更多
In the present paper, a numerical model combining radiation and conduction for porous materials is developed based on the finite volume method. The model can be used to investigate high-temperature thermal insulations...In the present paper, a numerical model combining radiation and conduction for porous materials is developed based on the finite volume method. The model can be used to investigate high-temperature thermal insulations which are widely used in metallic thermal protection systems on reusable launch vehicles and high-temperature fuel cells. The effective thermal conductivities(ECTs) which are measured experimentally can hardly be used separately to analyze the heat transfer behaviors of conduction and radiation for high-temperature insulation. By fitting the effective thermal conductivities with experimental data, the equivalent radiation transmittance, absorptivity and reflectivity, as well as a linear function to describe the relationship between temperature and conductivity can be estimated by an inverse problems method. The deviation between the calculated and measured effective thermal conductivities is less than 4%. Using the material parameters so obtained for conduction and radiation, the heat transfer process in multilayer thermal insulation(MTI) is calculated and the deviation between the calculated and the measured transient temperatures at a certain depth in the multilayer thermal insulation is less than 6.5%.展开更多
文摘We want to conclude on the interest of the “crimping” process used to produce the glass wool and to make a comparison for anisotropic factor obtained from structural property (air permeability) as well as thermal property (thermal conductivity and diffusivity). The main structural (densities, porosity, specific surface, air permeability) and the thermal (conductivity, diffusivity, heat capacity) characteristics of this glass wool are presented. Thermal results are determined by using several methods (Hot disc (HD), Heat Flow Meter (HFM) and Guarded Hot Plate).
基金supported by China Building Materials Research Institute
文摘In the present paper, a numerical model combining radiation and conduction for porous materials is developed based on the finite volume method. The model can be used to investigate high-temperature thermal insulations which are widely used in metallic thermal protection systems on reusable launch vehicles and high-temperature fuel cells. The effective thermal conductivities(ECTs) which are measured experimentally can hardly be used separately to analyze the heat transfer behaviors of conduction and radiation for high-temperature insulation. By fitting the effective thermal conductivities with experimental data, the equivalent radiation transmittance, absorptivity and reflectivity, as well as a linear function to describe the relationship between temperature and conductivity can be estimated by an inverse problems method. The deviation between the calculated and measured effective thermal conductivities is less than 4%. Using the material parameters so obtained for conduction and radiation, the heat transfer process in multilayer thermal insulation(MTI) is calculated and the deviation between the calculated and the measured transient temperatures at a certain depth in the multilayer thermal insulation is less than 6.5%.