Optical emission spectroscopy(OES)using the trace rare gases of Ar and Xe have been carried out in a radio frequency(RF)driven negative ion source at Institute of Plasma Physics,Chinese Academy of Science(ASIPP),in or...Optical emission spectroscopy(OES)using the trace rare gases of Ar and Xe have been carried out in a radio frequency(RF)driven negative ion source at Institute of Plasma Physics,Chinese Academy of Science(ASIPP),in order to determine the electron temperature and density of the hydrogen plasma.The line-ratio methods based on population models are applied to describe the radiation process of the excited state particles and establish their relations with the plasma parameters.The spectral lines from the argon and xenon excited state atoms with the wavelength of 750.4 and 828.0 nm are used to calculate the electron temperature based on the corona model.The argon ions emission lines with the wavelength of 480 and 488 nm are selected to calculate the electron density based on the collisional radiative model.OES has given the preliminary results of the electron temperature and density by varying the discharge gas pressure and RF power.According to the experimental results,the typical plasma parameters isTe2≈2-4 eV and ne≈1 x 1017-8 x 1017 m^-3 in front of plasma grid.展开更多
Electric potential near a wall for plasma with the surface produced negative ions with magnetic field increasing toward a wall is investigated analytically. The potential profile is derived analytically by using a pla...Electric potential near a wall for plasma with the surface produced negative ions with magnetic field increasing toward a wall is investigated analytically. The potential profile is derived analytically by using a plasma-sheath equation, where negative ions produced on the plasma grid (PG) surface are considered in addition to positive ions and electrons. The potential profile depends on the amount and the temperature of the surface produced negative ions and the profile of the magnetic field. The negative potential peak is formed in the sheath region near the PG surface for the case of strong surface production of negative ions or low temperature negative ions. As the increase rate of the magnetic field near the wall becomes large, the negative potential peak becomes small.展开更多
Using a full configuration-interaction method with Hylleraas-Gaussian basis function, this paper investigates the 1^10^+, 1^1(-1)^+ and 1^1(-2)6+ states of the hydrogen negative ion in strong magnetic fields. T...Using a full configuration-interaction method with Hylleraas-Gaussian basis function, this paper investigates the 1^10^+, 1^1(-1)^+ and 1^1(-2)6+ states of the hydrogen negative ion in strong magnetic fields. The total energies, electron detachment energies and derivatives of the total energy with respect to the magnetic field are presented as functions of magnetic field over a wide range of field strengths. Compared with the available theoretical data, the accuracy for the energies is enhanced significantly. The field regimes 3 〈 γ 〈 4 and 0.02 〈 γ 〈 0.05, in which the 1^1(-1)6+ and 1^1(-2)^+ states start to become bound, respectively, are also determined based on the calculated electron detachment energies.展开更多
Lattice wave of magnetized spherical dust in radio-frequency sheath with negative ions is investigated. The dispersion relation of two-dimensional hexagonal lattice horizontal wave and the influence of negative ions a...Lattice wave of magnetized spherical dust in radio-frequency sheath with negative ions is investigated. The dispersion relation of two-dimensional hexagonal lattice horizontal wave and the influence of negative ions and magnetic field intensity on the wave are also investigated. The results show that for two-dimensional hexagonal horizontal lattice wave, negative ions reduce the wave frequency at the range of long-wavelength, whereas raising the wave frequency at the range of short-wavelength and magnetic field contributes to dropping the wave frequency a little.展开更多
A three-dimensional fluid model is developed to investigate the radio-frequency inductively coupled H2 plasma in a reactor with a rectangular expansion chamber and a cylindrical driver chamber,for neutral beam injecti...A three-dimensional fluid model is developed to investigate the radio-frequency inductively coupled H2 plasma in a reactor with a rectangular expansion chamber and a cylindrical driver chamber,for neutral beam injection system in CFETR.In this model,the electron effective collision frequency and the ion mobility at high E-fields are employed,for accurate simulation of discharges at low pressures(0.3 Pa-2 Pa)and high powers(40 kW-100 kW).The results indicate that when the high E-field ion mobility is taken into account,the electron density is about four times higher than the value in the low E-field case.In addition,the influences of the magnetic field,pressure and power on the electron density and electron temperature are demonstrated.It is found that the electron density and electron temperature in the xz-plane along permanent magnet side become much more asymmetric when magnetic field enhances.However,the plasma parameters in the yz-plane without permanent magnet side are symmetric no matter the magnetic field is applied or not.Besides,the maximum of the electron density first increases and then decreases with magnetic field,while the electron temperature at the bottom of the expansion region first decreases and then almost keeps constant.As the pressure increases from 0.3 Pa to 2 Pa,the electron density becomes higher,with the maximum moving upwards to the driver region,and the symmetry of the electron temperature in the xz-plane becomes much better.As power increases,the electron density rises,whereas the spatial distribution is similar.It can be summarized that the magnetic field and gas pressure have great influence on the symmetry of the plasma parameters,while the power only has little effect.展开更多
In divertor tokamak plasma, the energetic ion losses of edge plasma are considered to be responsible for the negative radial electric field. In the present paper, a guiding center approximation orbit equation is found...In divertor tokamak plasma, the energetic ion losses of edge plasma are considered to be responsible for the negative radial electric field. In the present paper, a guiding center approximation orbit equation is found by assuming the conservation of three integrals of motion, i.e. the total ion energy E, the magnetic moment # and toroidal angular momentum Pc, and it is used to calculate expediently the ion orbit loss region. The direct ion orbit losses in the initial velocity space near the plasma edge of EAST with SN (single null) divertor configuration are analyzed systematically. The ion loss regions are obtained by solving the guiding center approximation orbit equation of critical ions with the effect of the radial electric field taken into account. Under the influence of plasma current Ip, the type of ions, the toroidal field Bt and the changes of the loss regions are analyzed and calculated accordingly.展开更多
This paper investigates the photodetachment of the negative hydrogen ion H- near an elastic wall in a magnetic field. The magnetic field confines the perpendicular motion of the electron, which results in a real three...This paper investigates the photodetachment of the negative hydrogen ion H- near an elastic wall in a magnetic field. The magnetic field confines the perpendicular motion of the electron, which results in a real three-dimensional well for the detached electron. The analytical formulas for the cross section of the photodetachment in the three-dimensional quantum well are derived based on both the quantum approach and closed-orbit theory. The magnetic field and the elastic surface lead to two completely different modulations to the cross section of the photodetachment. The oscillation amplitude depends on the strength of the magnetic field, the ion-wall distance and the photon polarization as well. Specially, for the circularly polarized photon-induced photodetachment, the cross sections display a suppressed (E - Eth)1/2 threshold law with energy E in the vicinity above Landau energy Eta, contrasting with the (E - Eta)-1/2 threshold law in the presence of only the magnetic field. The semiclassical calculation fits the quantum result quite well, although there are still small deviations. The difference is attributed to the failure of semiclassical mechanics.展开更多
C 60 /C 70 mixture reacts with hydrazine hydrate catalysed by tetrabutylammonium bromide (TBAB) in the presence of air to afford fullerene hydrazine derivatives C 60 (OH) n(NHNH 2) n and C 70 (OH) n(NHNH 2) n,whi...C 60 /C 70 mixture reacts with hydrazine hydrate catalysed by tetrabutylammonium bromide (TBAB) in the presence of air to afford fullerene hydrazine derivatives C 60 (OH) n(NHNH 2) n and C 70 (OH) n(NHNH 2) n,which are characterized by means of MS and FTIR.A possible reaction mechanism is discussed.展开更多
文摘Optical emission spectroscopy(OES)using the trace rare gases of Ar and Xe have been carried out in a radio frequency(RF)driven negative ion source at Institute of Plasma Physics,Chinese Academy of Science(ASIPP),in order to determine the electron temperature and density of the hydrogen plasma.The line-ratio methods based on population models are applied to describe the radiation process of the excited state particles and establish their relations with the plasma parameters.The spectral lines from the argon and xenon excited state atoms with the wavelength of 750.4 and 828.0 nm are used to calculate the electron temperature based on the corona model.The argon ions emission lines with the wavelength of 480 and 488 nm are selected to calculate the electron density based on the collisional radiative model.OES has given the preliminary results of the electron temperature and density by varying the discharge gas pressure and RF power.According to the experimental results,the typical plasma parameters isTe2≈2-4 eV and ne≈1 x 1017-8 x 1017 m^-3 in front of plasma grid.
文摘Electric potential near a wall for plasma with the surface produced negative ions with magnetic field increasing toward a wall is investigated analytically. The potential profile is derived analytically by using a plasma-sheath equation, where negative ions produced on the plasma grid (PG) surface are considered in addition to positive ions and electrons. The potential profile depends on the amount and the temperature of the surface produced negative ions and the profile of the magnetic field. The negative potential peak is formed in the sheath region near the PG surface for the case of strong surface production of negative ions or low temperature negative ions. As the increase rate of the magnetic field near the wall becomes large, the negative potential peak becomes small.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10874133)
文摘Using a full configuration-interaction method with Hylleraas-Gaussian basis function, this paper investigates the 1^10^+, 1^1(-1)^+ and 1^1(-2)6+ states of the hydrogen negative ion in strong magnetic fields. The total energies, electron detachment energies and derivatives of the total energy with respect to the magnetic field are presented as functions of magnetic field over a wide range of field strengths. Compared with the available theoretical data, the accuracy for the energies is enhanced significantly. The field regimes 3 〈 γ 〈 4 and 0.02 〈 γ 〈 0.05, in which the 1^1(-1)6+ and 1^1(-2)^+ states start to become bound, respectively, are also determined based on the calculated electron detachment energies.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10375063 and 40336052
文摘Lattice wave of magnetized spherical dust in radio-frequency sheath with negative ions is investigated. The dispersion relation of two-dimensional hexagonal lattice horizontal wave and the influence of negative ions and magnetic field intensity on the wave are also investigated. The results show that for two-dimensional hexagonal horizontal lattice wave, negative ions reduce the wave frequency at the range of long-wavelength, whereas raising the wave frequency at the range of short-wavelength and magnetic field contributes to dropping the wave frequency a little.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFE0300106)the National Natural Science Foundation of China(Grant No.12075049)the Fundamental Research Funds for the Central Universities,China(Grant Nos.DUT20LAB201 and DUT21LAB110).
文摘A three-dimensional fluid model is developed to investigate the radio-frequency inductively coupled H2 plasma in a reactor with a rectangular expansion chamber and a cylindrical driver chamber,for neutral beam injection system in CFETR.In this model,the electron effective collision frequency and the ion mobility at high E-fields are employed,for accurate simulation of discharges at low pressures(0.3 Pa-2 Pa)and high powers(40 kW-100 kW).The results indicate that when the high E-field ion mobility is taken into account,the electron density is about four times higher than the value in the low E-field case.In addition,the influences of the magnetic field,pressure and power on the electron density and electron temperature are demonstrated.It is found that the electron density and electron temperature in the xz-plane along permanent magnet side become much more asymmetric when magnetic field enhances.However,the plasma parameters in the yz-plane without permanent magnet side are symmetric no matter the magnetic field is applied or not.Besides,the maximum of the electron density first increases and then decreases with magnetic field,while the electron temperature at the bottom of the expansion region first decreases and then almost keeps constant.As the pressure increases from 0.3 Pa to 2 Pa,the electron density becomes higher,with the maximum moving upwards to the driver region,and the symmetry of the electron temperature in the xz-plane becomes much better.As power increases,the electron density rises,whereas the spatial distribution is similar.It can be summarized that the magnetic field and gas pressure have great influence on the symmetry of the plasma parameters,while the power only has little effect.
基金supported by National Natural Science Foundation of China(No.10075048)
文摘In divertor tokamak plasma, the energetic ion losses of edge plasma are considered to be responsible for the negative radial electric field. In the present paper, a guiding center approximation orbit equation is found by assuming the conservation of three integrals of motion, i.e. the total ion energy E, the magnetic moment # and toroidal angular momentum Pc, and it is used to calculate expediently the ion orbit loss region. The direct ion orbit losses in the initial velocity space near the plasma edge of EAST with SN (single null) divertor configuration are analyzed systematically. The ion loss regions are obtained by solving the guiding center approximation orbit equation of critical ions with the effect of the radial electric field taken into account. Under the influence of plasma current Ip, the type of ions, the toroidal field Bt and the changes of the loss regions are analyzed and calculated accordingly.
基金supported by the National Natural Science Foundation of China (Grant No. 10774162)
文摘This paper investigates the photodetachment of the negative hydrogen ion H- near an elastic wall in a magnetic field. The magnetic field confines the perpendicular motion of the electron, which results in a real three-dimensional well for the detached electron. The analytical formulas for the cross section of the photodetachment in the three-dimensional quantum well are derived based on both the quantum approach and closed-orbit theory. The magnetic field and the elastic surface lead to two completely different modulations to the cross section of the photodetachment. The oscillation amplitude depends on the strength of the magnetic field, the ion-wall distance and the photon polarization as well. Specially, for the circularly polarized photon-induced photodetachment, the cross sections display a suppressed (E - Eth)1/2 threshold law with energy E in the vicinity above Landau energy Eta, contrasting with the (E - Eta)-1/2 threshold law in the presence of only the magnetic field. The semiclassical calculation fits the quantum result quite well, although there are still small deviations. The difference is attributed to the failure of semiclassical mechanics.
文摘C 60 /C 70 mixture reacts with hydrazine hydrate catalysed by tetrabutylammonium bromide (TBAB) in the presence of air to afford fullerene hydrazine derivatives C 60 (OH) n(NHNH 2) n and C 70 (OH) n(NHNH 2) n,which are characterized by means of MS and FTIR.A possible reaction mechanism is discussed.