1. Introduction. Throughout this note, G is a finite group, M is a compact connected smooth on-dimensional manifold with or without boundary M, and G acts smoothly on M. We follow the standard notations ([B], [tD]). T...1. Introduction. Throughout this note, G is a finite group, M is a compact connected smooth on-dimensional manifold with or without boundary M, and G acts smoothly on M. We follow the standard notations ([B], [tD]). The isotropy subgroup of a point展开更多
文摘1. Introduction. Throughout this note, G is a finite group, M is a compact connected smooth on-dimensional manifold with or without boundary M, and G acts smoothly on M. We follow the standard notations ([B], [tD]). The isotropy subgroup of a point