The long-term enhancement in glutamate receptor mediated excitatory responses has been observed in stroke model. This pathological form of plasticity, termed post-ischemic long-term potentiation (i-LTP), points to f...The long-term enhancement in glutamate receptor mediated excitatory responses has been observed in stroke model. This pathological form of plasticity, termed post-ischemic long-term potentiation (i-LTP), points to functional reorganization after stroke. Little is known, however, about whether and how this i-LTP would affect subsequent induction of synaptic plasticity. Here, we first directly confirmed that i-LTP was induced in the endothelin-l-induced ischemia model as in other in vitro models. We also demonstrated increased expression of NR2B, CaMKII and p-CaMKII, which are reminiscent of i-LTP. We further induced LTP of field excitatory post- synaptic potentials (fEPSPs) on CA1 hippocampal neurons in peri-infarct regions of the endothelin-l-induced mini-stroke model. We found that LTP of fEPSPs, induced by high-frequency stimulation, displayed a progressive impairment at 12 and 24 hours after ischemia. Moreover, using in vivo multi-channel recording, we found that the local field potential, which represents electrical property of cell ensembles in more restricted regions, was also dam- pened at these two time points. These results suggest that i-LTP elevates the induction threshold of subsequent synap- tic plasticity. Our data helps to deepen the knowledge of meta-synaptic regulation of plasticity after focal ischemia.展开更多
Jujuboside A (JuA) is a main component of Jujubogenin extracted from the seeds of Ziziphus. The authors have not seen any report on JuA's direct effect on the neurons of the central nervous system. This study aime...Jujuboside A (JuA) is a main component of Jujubogenin extracted from the seeds of Ziziphus. The authors have not seen any report on JuA's direct effect on the neurons of the central nervous system. This study aimed to assess the effect of JuA on paired pulse responses of dentate gyrus granule cells in urethane anaesthetized rats, used intracerebroventricular (i.c.v.) JuA to mimic in vitro bath conditions in vivo. Paired pulse stimuli with 80ms interpulse interval were used to stimulate the perforant pathway. Evoked responses were recorded in the dentate gyrus cell layer after i.c.v. administration of 0.9% normal saline or JuA. In the first responses, the slopes of excitatory postsynaptic potential (EPSP1) and the amplitudes of population spike (PS1) decreased significantly after administration of JuA while the PS1 latencies increased significantly. In the second responses, the EPSP2 slopes and PS2 latencies were changed similarly to those of the first ones, but PS2 amplitudes increased. The results showed that JuA may have some inhibitory effect on the granule cell excitability mediated by presynaptic mechanism but may have little effect on the excitability mediated by postsynaptic mechanism since the second evoked N methyl D aspartic mediating paired pulse facilitation is a postsynaptic mechanism.展开更多
This review hopes to clearly explain the following viewpoints: (1) Neuronal synchronization underlies brain functioning, and it seems possible that blocking excessive synchronization in an epileptic neural network ...This review hopes to clearly explain the following viewpoints: (1) Neuronal synchronization underlies brain functioning, and it seems possible that blocking excessive synchronization in an epileptic neural network could reduce or even control seizures. (2) Local field potential coupling is a very common phenomenon during synchronization in networks. Removal of neurons or neuronal networks that are coupled can significantly alter the extracellular field potential. Interventions of coupling mediated by local field potentials could result in desynchronization of epileptic seizures. (3) The synchronized electrical activity generated by neurons is sensitive to changes in the size of the extracellular space, which affects the efficiency of field potential transmission and the threshold of cell excitability. (4) Manipulations of the field potential fluctuations could help block synchronization at seizure onset.展开更多
Local field potential(LFP) signals of the rat hippocampus were recorded under noninvasive focused ultrasound stimulation(FUS) with different ultrasonic powers. The LFP mean absolute power was calculated with the Welch...Local field potential(LFP) signals of the rat hippocampus were recorded under noninvasive focused ultrasound stimulation(FUS) with different ultrasonic powers. The LFP mean absolute power was calculated with the Welch algorithm at the delta, theta, alpha, beta, and gamma frequency bands. The experimental results demonstrate that the LFP mean absolute power at different frequency bands increases as the ultrasound power increases.展开更多
The concept of receptive field(RF) is central to sensory neuroscience. Neuronal RF properties have been substantially studied in animals,while those in humans remain nearly unexplored. Here, we measured neuronal RFs w...The concept of receptive field(RF) is central to sensory neuroscience. Neuronal RF properties have been substantially studied in animals,while those in humans remain nearly unexplored. Here, we measured neuronal RFs with intracranial local field potentials(LFPs) and spiking activity in human visual cortex(V1/V2/V3). We recorded LFPs via macro-contacts and discovered that RF sizes estimated from lowfrequency activity(LFA, 0.5–30 Hz) were larger than those estimated from low-gamma activity(LGA, 30–60 Hz) and high-gamma activity(HGA, 60–150 Hz). We then took a rare opportunity to record LFPs and spiking activity via microwires in V1 simultaneously. We found that RF sizes and temporal profiles measured from LGA and HGA closely matched those from spiking activity. In sum, this study reveals that spiking activity of neurons in human visual cortex could be well approximated by LGA and HGA in RF estimation and temporal profile measurement, implying the pivotal functions of LGA and HGA in early visual information processing.展开更多
This study aims to improve knowledge of the structure of southwest Cameroon based on the analysis and interpretation of gravity data derived from the SGG-UGM-2 model. A residual anomaly map was first calculated from t...This study aims to improve knowledge of the structure of southwest Cameroon based on the analysis and interpretation of gravity data derived from the SGG-UGM-2 model. A residual anomaly map was first calculated from the Bouguer anomaly map, which is strongly affected by a regional gradient. The residual anomaly map generated provides information on the variation in subsurface density, but does not provide sufficient information, hence the interest in using filtering with the aim of highlighting the structures affecting the area of south-west Cameroon. Three interpretation methods were used: vertical gradient, horizontal gradient coupled with upward continuation and Euler deconvolution. The application of these treatments enabled us to map a large number of gravimetric lineaments materializing density discontinuities. These lineaments are organized along main preferential directions: NW-SE, NNE-SSW, ENE-WSW and secondary directions: NNW-SSE, NE-SW, NS and E-W. Euler solutions indicate depths of up to 7337 m. Thanks to the results of this research, significant information has been acquired, contributing to a deeper understanding of the structural composition of the study area. The resulting structural map vividly illustrates the major tectonic events that shaped the geological framework of the study area. It also serves as a guide for prospecting subsurface resources (water and hydrocarbons). .展开更多
In this paper the application of image enhancement techniques to potential field data is briefly described and two improved enhancement methods are introduced. One method is derived from the histogram equalization tec...In this paper the application of image enhancement techniques to potential field data is briefly described and two improved enhancement methods are introduced. One method is derived from the histogram equalization technique and automatically determines the color spectra of geophysical maps. Colors can be properly distributed and visual effects and resolution can be enhanced by the method. The other method is based on the modified Radon transform and gradient calculation and is used to detect and enhance linear features in gravity and magnetic images. The method facilites the detection of line segments in the transform domain. Tests with synthetic images and real data show the methods to be effective in feature enhancement.展开更多
Working memory plays an important role in human cognition. This study investigated how working memory was encoded by the power of multichannel local field potentials (LFPs) based on sparse non negative matrix factor...Working memory plays an important role in human cognition. This study investigated how working memory was encoded by the power of multichannel local field potentials (LFPs) based on sparse non negative matrix factorization (SNMF). SNMF was used to extract features from LFPs recorded from the prefrontal cortex of four SpragueDawley rats during a memory task in a Y maze, with 10 trials for each rat. Then the powerincreased LFP components were selected as working memoryrelated features and the other components were removed. After that, the inverse operation of SNMF was used to study the encoding of working memory in the time frequency domain. We demonstrated that theta and gamma power increased significantly during the working memory task. The results suggested that postsynaptic activity was simulated well by the sparse activity model. The theta and gamma bands were meaningful for encoding working memory.展开更多
The local field potential(LFP) is a signal reflecting the electrical activity of neurons surrounding the electrode tip. Synchronization between LFP signals provides important details about how neural networks are or...The local field potential(LFP) is a signal reflecting the electrical activity of neurons surrounding the electrode tip. Synchronization between LFP signals provides important details about how neural networks are organized. Synchronization between two distant brain regions is hard to detect using linear synchronization algorithms like correlation and coherence. Synchronization likelihood(SL) is a non-linear synchronization-detecting algorithm widely used in studies of neural signals from two distant brain areas. One drawback of non-linear algorithms is the heavy computational burden. In the present study, we proposed a graphic processing unit(GPU)-accelerated implementation of an SL algorithm with optional 2-dimensional time-shifting. We tested the algorithm with both artificial data and raw LFP data. The results showed that this method revealed detailed information from original data with the synchronization values of two temporal axes,delay time and onset time, and thus can be used to reconstruct the temporal structure of a neural network. Our results suggest that this GPU-accelerated method can be extended to other algorithms for processing time-series signals(like EEG and f MRI) using similar recording techniques.展开更多
Edge detection and enhancement techniques are commonly used in recognizing the edge of geologic bodies using potential field data. We present a new edge recognition technology based on the normalized vertical derivati...Edge detection and enhancement techniques are commonly used in recognizing the edge of geologic bodies using potential field data. We present a new edge recognition technology based on the normalized vertical derivative of the total horizontal derivative which has the functions of both edge detection and enhancement techniques. First, we calculate the total horizontal derivative (THDR) of the potential-field data and then compute the n-order vertical derivative (VDRn) of the THDR. For the n-order vertical derivative, the peak value of total horizontal derivative (PTHDR) is obtained using a threshold value greater than 0. This PTHDR can be used for edge detection. Second, the PTHDR value is divided by the total horizontal derivative and normalized by the maximum value. Finally, we used different kinds of numerical models to verify the effectiveness and reliability of the new edge recognition technology.展开更多
A novel robot navigation algorithm with global path generation capability is presented. Local minimum is a most intractable but is an encountered frequently problem in potential field based robot navigation.Through ap...A novel robot navigation algorithm with global path generation capability is presented. Local minimum is a most intractable but is an encountered frequently problem in potential field based robot navigation.Through appointing appropriately some virtual local targets on the journey, it can be solved effectively. The key concept employed in this algorithm are the rules that govern when and how to appoint these virtual local targets. When the robot finds itself in danger of local minimum, a virtual local target is appointed to replace the global goal temporarily according to the rules. After the virtual target is reached, the robot continues on its journey by heading towards the global goal. The algorithm prevents the robot from running into local minima anymore. Simulation results showed that it is very effective in complex obstacle environments.展开更多
A shift sampling theory established by author (1997a) is a generalization of Fourier transform computation theory. Based on this theory, I develop an Algorithm-Error (A-E) equation of potential field transformatio...A shift sampling theory established by author (1997a) is a generalization of Fourier transform computation theory. Based on this theory, I develop an Algorithm-Error (A-E) equation of potential field transformations in the wavenumber domain, which not only gives a more flexible algorithm of potential field transformations, but also reveals the law of error of potential field transformations in the wavenumber domain. The DFT0η η(0.5, 0.5) reduction-to-pole (RTP) technique derived from the A-E equation significantly improves the resolution and accuracy of RTP anomalies at low magnetic latitudes, including the magnetic equator. The law (origin, form mechanism, and essential properties) of the edge oscillation revealed by the A-E equation points out theoretically a way of improving the effect of existing padding methods in high-pass transformations in the wavenumber domain.展开更多
Cooperative path planning is an important area in fixed-wing UAV swarm.However,avoiding multiple timevarying obstacles and avoiding local optimum are two challenges for existing approaches in a dynamic environment.Fir...Cooperative path planning is an important area in fixed-wing UAV swarm.However,avoiding multiple timevarying obstacles and avoiding local optimum are two challenges for existing approaches in a dynamic environment.Firstly,a normalized artificial potential field optimization is proposed by reconstructing a novel function with anisotropy in each dimension,which can make the flight speed of a fixed UAV swarm independent of the repulsive/attractive gain coefficient and avoid trapping into local optimization and local oscillation.Then,taking into account minimum velocity and turning angular velocity of fixed-wing UAV swarm,a strategy of decomposing target vector to avoid moving obstacles and pop-up threats is proposed.Finally,several simulations are carried out to illustrate superiority and effectiveness.展开更多
For real-time and distributed features of multi-robot system,the strategy of combining the improved artificial potential field method and the rules based on priority is proposed to study the collision avoidance planni...For real-time and distributed features of multi-robot system,the strategy of combining the improved artificial potential field method and the rules based on priority is proposed to study the collision avoidance planning in multi-robot systems. The improved artificial potential field based on simulated annealing algorithm satisfactorily overcomes the drawbacks of traditional artificial potential field method,so that robots can find a local collision-free path in the complex environment. According to the movement vector trail of robots,collisions between robots can be detected,thereby the collision avoidance rules can be obtained. Coordination between robots by the priority based rules improves the real-time property of multi-robot system. The combination of these two methods can help a robot to find a collision-free path from a starting point to the goal quickly in an environment with many obstacles. The feasibility of the proposed method is validated in the VC-based simulated environment.展开更多
An ant colony optimization with artificial potential field(ACOAPF)algorithm is proposed to solve the cooperative search mission planning problem of unmanned aerial vehicle(UAV)swarm.This algorithm adopts a distributed...An ant colony optimization with artificial potential field(ACOAPF)algorithm is proposed to solve the cooperative search mission planning problem of unmanned aerial vehicle(UAV)swarm.This algorithm adopts a distributed architecture where each UAV is considered as an ant and makes decision autonomously.At each decision step,the ants choose the next gird according to the state transition rule and update its own artificial potential field and pheromone map based on the current search results.Through iterations of this process,the cooperative search of UAV swarm for mission area is realized.The state transition rule is divided into two types.If the artificial potential force is larger than a threshold,the deterministic transition rule is adopted,otherwise a heuristic transition rule is used.The deterministic transition rule can ensure UAVs to avoid the threat or approach the target quickly.And the heuristics transition rule considering the pheromone and heuristic information ensures the continuous search of area with the goal of covering more unknown area and finding more targets.Finally,simulations are carried out to verify the effectiveness of the proposed ACOAPF algorithm for cooperative search mission of UAV swarm.展开更多
We evaluated 2011-2015 mobile relative gravity data from the Hexi monitoring network that covers the epicenter of the 2016 Menyuan Ms6.4 earthquake, Qinghai Province, China and examined the spatiotemporal characterist...We evaluated 2011-2015 mobile relative gravity data from the Hexi monitoring network that covers the epicenter of the 2016 Menyuan Ms6.4 earthquake, Qinghai Province, China and examined the spatiotemporal characteristics of the gravity field at the focal depth. In addition, we assessed the regional gravity field and its variation the half-year before the earthquake. We use first different interpolation algorithms to build a grid for the gravity data and then introduce potential field interpolation-cutting separation techniques and adaptive noise filtering. The results suggest that the gravity filed at the focal depth of 11.12 km separated from the total gravity field at about -400-150 ×10^-8 m/s^2 in the second half of 2015, which is larger than that in the same period in 2011 to 2014 (±30×10^-8 m/s^2). Moreover, at the same time, the gravity field changed fast from September 2014 to May 2015 and May 2015 to September 2015, reflecting to some extent material migration deep in the crust before the Menyuan earthquake.展开更多
A thorough understanding on the mechanical properties of carbon nanotube (CNT) is essential in extending the advanced applications of CNT based systems. However, conducting experiments to estimate mechanical propert...A thorough understanding on the mechanical properties of carbon nanotube (CNT) is essential in extending the advanced applications of CNT based systems. However, conducting experiments to estimate mechanical properties at this scale is extremely challenging. Therefore, development of mechanistic models to estimate the mechanical properties of CNTs along with the integration of existing continuum mechanics concepts is critically important. This paper presents a comprehensive molecular dynamics simulation study on the size dependency and potential function influence of mechanical properties of CNT. Commonly used reactive bond order (REBO) and adaptive intermolecular reactive bond order (A1REBO) potential functions were considered in this regard. Young's modulus and shear modulus of CNTs are derived by integrating classical continuum mechanics concepts with molecular dynamics simulations. The results indicate that the potential function has a significant influence on the estimated mechanical properties of CNTs, and the influence of potential field is much higher when studying the torsional behaviour of CNTs than the tensile behaviour.展开更多
A novel method was designed to solve reinforcement learning problems with artificial potential field.Firstly a reinforcement learning problem was transferred to a path planning problem by using artificial potential fi...A novel method was designed to solve reinforcement learning problems with artificial potential field.Firstly a reinforcement learning problem was transferred to a path planning problem by using artificial potential field(APF),which was a very appropriate method to model a reinforcement learning problem.Secondly,a new APF algorithm was proposed to overcome the local minimum problem in the potential field methods with a virtual water-flow concept.The performance of this new method was tested by a gridworld problem named as key and door maze.The experimental results show that within 45 trials,good and deterministic policies are found in almost all simulations.In comparison with WIERING's HQ-learning system which needs 20 000 trials for stable solution,the proposed new method can obtain optimal and stable policy far more quickly than HQ-learning.Therefore,the new method is simple and effective to give an optimal solution to the reinforcement learning problem.展开更多
Potential field due to line sources residing on slender heterogeneities is involved in various areas,such as heat conduction,potential flow,and electrostatics.Often dipolar line sources are either prescribed or induce...Potential field due to line sources residing on slender heterogeneities is involved in various areas,such as heat conduction,potential flow,and electrostatics.Often dipolar line sources are either prescribed or induced due to close interaction with other objects.Its calculation requires a higher-order scheme to take into account the dipolar effect as well as net source effect.In the present work,we apply such a higher-order line element method to analyze the potential field with cylindrical slender heterogeneities.In a benchmark example of two parallel rods,we compare the line element solution with the boundary element solution to show the accuracy as a function in terms of rods distance.Furthermore,we use more complicated examples to demonstrate the capability of the line element technique.展开更多
To overcome the shortcomings of the traditional artificial potential field method in mobile robot path planning, an improved artificial potential field model (IAPFM) was established, then a new path planning method ...To overcome the shortcomings of the traditional artificial potential field method in mobile robot path planning, an improved artificial potential field model (IAPFM) was established, then a new path planning method combining the IAPFM with optimization algorithm (trust region algorithm) is proposed. Attractive force between the robot and the target location, and repulsive force between the robot and the obstacles are both converted to the potential field intensity; and filled potential field is used to guide the robot to go out of the local minimum points ; on this basis, the effect of dynamic obstacles velocity and the robot's velocity is consid thers and the IAPFM is established, then both the expressions of the attractive potential field and the repulsive potential field are obtained. The trust region algorithm is used to search the minimum value of the sum of all the potential field inten- sities within the movement scope which the robot can arrive in a sampling period. Connecting of all the points which hare the minimum intensity in every sampling period constitutes the global optimization path. Experiment result shows that the method can meet the real-time requirement, and is able to execute the mobile robot path planning task effectively in the dynamic environment.展开更多
基金supported by Major State Basic Research Program of China(Grant No.2013CB733801)
文摘The long-term enhancement in glutamate receptor mediated excitatory responses has been observed in stroke model. This pathological form of plasticity, termed post-ischemic long-term potentiation (i-LTP), points to functional reorganization after stroke. Little is known, however, about whether and how this i-LTP would affect subsequent induction of synaptic plasticity. Here, we first directly confirmed that i-LTP was induced in the endothelin-l-induced ischemia model as in other in vitro models. We also demonstrated increased expression of NR2B, CaMKII and p-CaMKII, which are reminiscent of i-LTP. We further induced LTP of field excitatory post- synaptic potentials (fEPSPs) on CA1 hippocampal neurons in peri-infarct regions of the endothelin-l-induced mini-stroke model. We found that LTP of fEPSPs, induced by high-frequency stimulation, displayed a progressive impairment at 12 and 24 hours after ischemia. Moreover, using in vivo multi-channel recording, we found that the local field potential, which represents electrical property of cell ensembles in more restricted regions, was also dam- pened at these two time points. These results suggest that i-LTP elevates the induction threshold of subsequent synap- tic plasticity. Our data helps to deepen the knowledge of meta-synaptic regulation of plasticity after focal ischemia.
文摘Jujuboside A (JuA) is a main component of Jujubogenin extracted from the seeds of Ziziphus. The authors have not seen any report on JuA's direct effect on the neurons of the central nervous system. This study aimed to assess the effect of JuA on paired pulse responses of dentate gyrus granule cells in urethane anaesthetized rats, used intracerebroventricular (i.c.v.) JuA to mimic in vitro bath conditions in vivo. Paired pulse stimuli with 80ms interpulse interval were used to stimulate the perforant pathway. Evoked responses were recorded in the dentate gyrus cell layer after i.c.v. administration of 0.9% normal saline or JuA. In the first responses, the slopes of excitatory postsynaptic potential (EPSP1) and the amplitudes of population spike (PS1) decreased significantly after administration of JuA while the PS1 latencies increased significantly. In the second responses, the EPSP2 slopes and PS2 latencies were changed similarly to those of the first ones, but PS2 amplitudes increased. The results showed that JuA may have some inhibitory effect on the granule cell excitability mediated by presynaptic mechanism but may have little effect on the excitability mediated by postsynaptic mechanism since the second evoked N methyl D aspartic mediating paired pulse facilitation is a postsynaptic mechanism.
基金supported by grants from the National Natural Science Foundation of China,No. 30971534125 Project of the Third Xiangya Hospital of Central South University,China
文摘This review hopes to clearly explain the following viewpoints: (1) Neuronal synchronization underlies brain functioning, and it seems possible that blocking excessive synchronization in an epileptic neural network could reduce or even control seizures. (2) Local field potential coupling is a very common phenomenon during synchronization in networks. Removal of neurons or neuronal networks that are coupled can significantly alter the extracellular field potential. Interventions of coupling mediated by local field potentials could result in desynchronization of epileptic seizures. (3) The synchronized electrical activity generated by neurons is sensitive to changes in the size of the extracellular space, which affects the efficiency of field potential transmission and the threshold of cell excitability. (4) Manipulations of the field potential fluctuations could help block synchronization at seizure onset.
基金supported by the National Natural Science Foundation of China(Grant No.61273063)China Postdoctoral Science Foundation(Grant No.2013M540215)the Natural Science Foundation of Hebei Province,China(Grant No.F2014203161)
文摘Local field potential(LFP) signals of the rat hippocampus were recorded under noninvasive focused ultrasound stimulation(FUS) with different ultrasonic powers. The LFP mean absolute power was calculated with the Welch algorithm at the delta, theta, alpha, beta, and gamma frequency bands. The experimental results demonstrate that the LFP mean absolute power at different frequency bands increases as the ultrasound power increases.
基金supported by the National Science and Technology Innovation 2030 Major Program(2022ZD0204802,2022ZD0204804)the National Natural Science Foundation of China(31930053,32171039)Beijing Academy of Artificial Intelligence(BAAI)。
文摘The concept of receptive field(RF) is central to sensory neuroscience. Neuronal RF properties have been substantially studied in animals,while those in humans remain nearly unexplored. Here, we measured neuronal RFs with intracranial local field potentials(LFPs) and spiking activity in human visual cortex(V1/V2/V3). We recorded LFPs via macro-contacts and discovered that RF sizes estimated from lowfrequency activity(LFA, 0.5–30 Hz) were larger than those estimated from low-gamma activity(LGA, 30–60 Hz) and high-gamma activity(HGA, 60–150 Hz). We then took a rare opportunity to record LFPs and spiking activity via microwires in V1 simultaneously. We found that RF sizes and temporal profiles measured from LGA and HGA closely matched those from spiking activity. In sum, this study reveals that spiking activity of neurons in human visual cortex could be well approximated by LGA and HGA in RF estimation and temporal profile measurement, implying the pivotal functions of LGA and HGA in early visual information processing.
文摘This study aims to improve knowledge of the structure of southwest Cameroon based on the analysis and interpretation of gravity data derived from the SGG-UGM-2 model. A residual anomaly map was first calculated from the Bouguer anomaly map, which is strongly affected by a regional gradient. The residual anomaly map generated provides information on the variation in subsurface density, but does not provide sufficient information, hence the interest in using filtering with the aim of highlighting the structures affecting the area of south-west Cameroon. Three interpretation methods were used: vertical gradient, horizontal gradient coupled with upward continuation and Euler deconvolution. The application of these treatments enabled us to map a large number of gravimetric lineaments materializing density discontinuities. These lineaments are organized along main preferential directions: NW-SE, NNE-SSW, ENE-WSW and secondary directions: NNW-SSE, NE-SW, NS and E-W. Euler solutions indicate depths of up to 7337 m. Thanks to the results of this research, significant information has been acquired, contributing to a deeper understanding of the structural composition of the study area. The resulting structural map vividly illustrates the major tectonic events that shaped the geological framework of the study area. It also serves as a guide for prospecting subsurface resources (water and hydrocarbons). .
基金This work is supported by the research project (grant No. G20000467) of the Institute of Geology and Geophysics, CAS and bythe China Postdoctoral Science Foundation (No. 2004036083).
文摘In this paper the application of image enhancement techniques to potential field data is briefly described and two improved enhancement methods are introduced. One method is derived from the histogram equalization technique and automatically determines the color spectra of geophysical maps. Colors can be properly distributed and visual effects and resolution can be enhanced by the method. The other method is based on the modified Radon transform and gradient calculation and is used to detect and enhance linear features in gravity and magnetic images. The method facilites the detection of line segments in the transform domain. Tests with synthetic images and real data show the methods to be effective in feature enhancement.
基金supported by the National Natural Science Foundation of China (61074131 and 91132722)the Doctoral Fund of the Ministry of Education of China (21101202110007)
文摘Working memory plays an important role in human cognition. This study investigated how working memory was encoded by the power of multichannel local field potentials (LFPs) based on sparse non negative matrix factorization (SNMF). SNMF was used to extract features from LFPs recorded from the prefrontal cortex of four SpragueDawley rats during a memory task in a Y maze, with 10 trials for each rat. Then the powerincreased LFP components were selected as working memoryrelated features and the other components were removed. After that, the inverse operation of SNMF was used to study the encoding of working memory in the time frequency domain. We demonstrated that theta and gamma power increased significantly during the working memory task. The results suggested that postsynaptic activity was simulated well by the sparse activity model. The theta and gamma bands were meaningful for encoding working memory.
基金supported by Grants from the National Natural Science Foundation of China(81230023,81571067,and 81521063)National Basic Research Development Program(973 Program)of China(2013CB531905)the‘‘111’’Project of China
文摘The local field potential(LFP) is a signal reflecting the electrical activity of neurons surrounding the electrode tip. Synchronization between LFP signals provides important details about how neural networks are organized. Synchronization between two distant brain regions is hard to detect using linear synchronization algorithms like correlation and coherence. Synchronization likelihood(SL) is a non-linear synchronization-detecting algorithm widely used in studies of neural signals from two distant brain areas. One drawback of non-linear algorithms is the heavy computational burden. In the present study, we proposed a graphic processing unit(GPU)-accelerated implementation of an SL algorithm with optional 2-dimensional time-shifting. We tested the algorithm with both artificial data and raw LFP data. The results showed that this method revealed detailed information from original data with the synchronization values of two temporal axes,delay time and onset time, and thus can be used to reconstruct the temporal structure of a neural network. Our results suggest that this GPU-accelerated method can be extended to other algorithms for processing time-series signals(like EEG and f MRI) using similar recording techniques.
基金supported by the National Science and Technology Major Projects (2008ZX05025)the Project of National Oil and Gas Resources Strategic Constituency Survey and Evaluation of the Ministry of Land and Resources,China (XQ-2007-05)
文摘Edge detection and enhancement techniques are commonly used in recognizing the edge of geologic bodies using potential field data. We present a new edge recognition technology based on the normalized vertical derivative of the total horizontal derivative which has the functions of both edge detection and enhancement techniques. First, we calculate the total horizontal derivative (THDR) of the potential-field data and then compute the n-order vertical derivative (VDRn) of the THDR. For the n-order vertical derivative, the peak value of total horizontal derivative (PTHDR) is obtained using a threshold value greater than 0. This PTHDR can be used for edge detection. Second, the PTHDR value is divided by the total horizontal derivative and normalized by the maximum value. Finally, we used different kinds of numerical models to verify the effectiveness and reliability of the new edge recognition technology.
文摘A novel robot navigation algorithm with global path generation capability is presented. Local minimum is a most intractable but is an encountered frequently problem in potential field based robot navigation.Through appointing appropriately some virtual local targets on the journey, it can be solved effectively. The key concept employed in this algorithm are the rules that govern when and how to appoint these virtual local targets. When the robot finds itself in danger of local minimum, a virtual local target is appointed to replace the global goal temporarily according to the rules. After the virtual target is reached, the robot continues on its journey by heading towards the global goal. The algorithm prevents the robot from running into local minima anymore. Simulation results showed that it is very effective in complex obstacle environments.
文摘A shift sampling theory established by author (1997a) is a generalization of Fourier transform computation theory. Based on this theory, I develop an Algorithm-Error (A-E) equation of potential field transformations in the wavenumber domain, which not only gives a more flexible algorithm of potential field transformations, but also reveals the law of error of potential field transformations in the wavenumber domain. The DFT0η η(0.5, 0.5) reduction-to-pole (RTP) technique derived from the A-E equation significantly improves the resolution and accuracy of RTP anomalies at low magnetic latitudes, including the magnetic equator. The law (origin, form mechanism, and essential properties) of the edge oscillation revealed by the A-E equation points out theoretically a way of improving the effect of existing padding methods in high-pass transformations in the wavenumber domain.
文摘Cooperative path planning is an important area in fixed-wing UAV swarm.However,avoiding multiple timevarying obstacles and avoiding local optimum are two challenges for existing approaches in a dynamic environment.Firstly,a normalized artificial potential field optimization is proposed by reconstructing a novel function with anisotropy in each dimension,which can make the flight speed of a fixed UAV swarm independent of the repulsive/attractive gain coefficient and avoid trapping into local optimization and local oscillation.Then,taking into account minimum velocity and turning angular velocity of fixed-wing UAV swarm,a strategy of decomposing target vector to avoid moving obstacles and pop-up threats is proposed.Finally,several simulations are carried out to illustrate superiority and effectiveness.
基金Sponsored by the Science Foundation for Youths of Heilongjiang province (Grant No.QC08C05)
文摘For real-time and distributed features of multi-robot system,the strategy of combining the improved artificial potential field method and the rules based on priority is proposed to study the collision avoidance planning in multi-robot systems. The improved artificial potential field based on simulated annealing algorithm satisfactorily overcomes the drawbacks of traditional artificial potential field method,so that robots can find a local collision-free path in the complex environment. According to the movement vector trail of robots,collisions between robots can be detected,thereby the collision avoidance rules can be obtained. Coordination between robots by the priority based rules improves the real-time property of multi-robot system. The combination of these two methods can help a robot to find a collision-free path from a starting point to the goal quickly in an environment with many obstacles. The feasibility of the proposed method is validated in the VC-based simulated environment.
基金supported by the National Natural Science Foundation of China (Nos.61973158, 61673209)the Aeronautical Science Foundation (No.2016ZA52009)
文摘An ant colony optimization with artificial potential field(ACOAPF)algorithm is proposed to solve the cooperative search mission planning problem of unmanned aerial vehicle(UAV)swarm.This algorithm adopts a distributed architecture where each UAV is considered as an ant and makes decision autonomously.At each decision step,the ants choose the next gird according to the state transition rule and update its own artificial potential field and pheromone map based on the current search results.Through iterations of this process,the cooperative search of UAV swarm for mission area is realized.The state transition rule is divided into two types.If the artificial potential force is larger than a threshold,the deterministic transition rule is adopted,otherwise a heuristic transition rule is used.The deterministic transition rule can ensure UAVs to avoid the threat or approach the target quickly.And the heuristics transition rule considering the pheromone and heuristic information ensures the continuous search of area with the goal of covering more unknown area and finding more targets.Finally,simulations are carried out to verify the effectiveness of the proposed ACOAPF algorithm for cooperative search mission of UAV swarm.
基金supported by the Science for Earthquake Resilience(No.XH17058Y)Science and Technology Innovation Fund of the First Crust Monitoring and Application Center,CEA(No.FMC2016004)Special Program for Basic Work of the Ministry of Science and Technology,China(No.2015FY210403)
文摘We evaluated 2011-2015 mobile relative gravity data from the Hexi monitoring network that covers the epicenter of the 2016 Menyuan Ms6.4 earthquake, Qinghai Province, China and examined the spatiotemporal characteristics of the gravity field at the focal depth. In addition, we assessed the regional gravity field and its variation the half-year before the earthquake. We use first different interpolation algorithms to build a grid for the gravity data and then introduce potential field interpolation-cutting separation techniques and adaptive noise filtering. The results suggest that the gravity filed at the focal depth of 11.12 km separated from the total gravity field at about -400-150 ×10^-8 m/s^2 in the second half of 2015, which is larger than that in the same period in 2011 to 2014 (±30×10^-8 m/s^2). Moreover, at the same time, the gravity field changed fast from September 2014 to May 2015 and May 2015 to September 2015, reflecting to some extent material migration deep in the crust before the Menyuan earthquake.
基金financially supported by National Science Foundation(NSF)of Sri Lankathe Natural Sciences and Engineering Research Council(NSERC)of Canada
文摘A thorough understanding on the mechanical properties of carbon nanotube (CNT) is essential in extending the advanced applications of CNT based systems. However, conducting experiments to estimate mechanical properties at this scale is extremely challenging. Therefore, development of mechanistic models to estimate the mechanical properties of CNTs along with the integration of existing continuum mechanics concepts is critically important. This paper presents a comprehensive molecular dynamics simulation study on the size dependency and potential function influence of mechanical properties of CNT. Commonly used reactive bond order (REBO) and adaptive intermolecular reactive bond order (A1REBO) potential functions were considered in this regard. Young's modulus and shear modulus of CNTs are derived by integrating classical continuum mechanics concepts with molecular dynamics simulations. The results indicate that the potential function has a significant influence on the estimated mechanical properties of CNTs, and the influence of potential field is much higher when studying the torsional behaviour of CNTs than the tensile behaviour.
基金Projects(30270496,60075019,60575012)supported by the National Natural Science Foundation of China
文摘A novel method was designed to solve reinforcement learning problems with artificial potential field.Firstly a reinforcement learning problem was transferred to a path planning problem by using artificial potential field(APF),which was a very appropriate method to model a reinforcement learning problem.Secondly,a new APF algorithm was proposed to overcome the local minimum problem in the potential field methods with a virtual water-flow concept.The performance of this new method was tested by a gridworld problem named as key and door maze.The experimental results show that within 45 trials,good and deterministic policies are found in almost all simulations.In comparison with WIERING's HQ-learning system which needs 20 000 trials for stable solution,the proposed new method can obtain optimal and stable policy far more quickly than HQ-learning.Therefore,the new method is simple and effective to give an optimal solution to the reinforcement learning problem.
文摘Potential field due to line sources residing on slender heterogeneities is involved in various areas,such as heat conduction,potential flow,and electrostatics.Often dipolar line sources are either prescribed or induced due to close interaction with other objects.Its calculation requires a higher-order scheme to take into account the dipolar effect as well as net source effect.In the present work,we apply such a higher-order line element method to analyze the potential field with cylindrical slender heterogeneities.In a benchmark example of two parallel rods,we compare the line element solution with the boundary element solution to show the accuracy as a function in terms of rods distance.Furthermore,we use more complicated examples to demonstrate the capability of the line element technique.
基金Supported by the National High Technology Research and Development Programme of China( No. 2006AA04Z245 ) and China Postdoctoral Science Foundation ( No. 200904500988 ).
文摘To overcome the shortcomings of the traditional artificial potential field method in mobile robot path planning, an improved artificial potential field model (IAPFM) was established, then a new path planning method combining the IAPFM with optimization algorithm (trust region algorithm) is proposed. Attractive force between the robot and the target location, and repulsive force between the robot and the obstacles are both converted to the potential field intensity; and filled potential field is used to guide the robot to go out of the local minimum points ; on this basis, the effect of dynamic obstacles velocity and the robot's velocity is consid thers and the IAPFM is established, then both the expressions of the attractive potential field and the repulsive potential field are obtained. The trust region algorithm is used to search the minimum value of the sum of all the potential field inten- sities within the movement scope which the robot can arrive in a sampling period. Connecting of all the points which hare the minimum intensity in every sampling period constitutes the global optimization path. Experiment result shows that the method can meet the real-time requirement, and is able to execute the mobile robot path planning task effectively in the dynamic environment.