期刊文献+
共找到5,108篇文章
< 1 2 250 >
每页显示 20 50 100
Investigation of reflection anisotropy induced by micropipe defects on the surface of a 4H-SiC single crystal using scanning anisotropy microscopy
1
作者 黄威 俞金玲 +7 位作者 刘雨 彭燕 王利军 梁平 陈堂胜 徐现刚 刘峰奇 陈涌海 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期630-637,共8页
Optical reflection anisotropy microscopy mappings of micropipe defects on the surface of a 4H-SiC single crystal are studied by the scanning anisotropy microscopy(SAM)system.The reflection anisotropy(RA)image with a&#... Optical reflection anisotropy microscopy mappings of micropipe defects on the surface of a 4H-SiC single crystal are studied by the scanning anisotropy microscopy(SAM)system.The reflection anisotropy(RA)image with a'butterfly pattern'is obtained around the micropipes by SAM.The RA image of the edge dislocations is theoretically simulated based on dislocation theory and the photoelastic principle.By comparing with the Raman spectrum,it is verified that the micropipes consist of edge dislocations.The different patterns of the RA images are due to the different orientations of the Burgers vectors.Besides,the strain distribution of the micropipes is also deduced.One can identify the dislocation type,the direction of the Burgers vector and the optical anisotropy from the RA image by using SAM.Therefore,SAM is an ideal tool to measure the optical anisotropy induced by the strain field around a defect. 展开更多
关键词 scanning anisotropy microscopy SiC reflection anisotropy edge dislocation
下载PDF
A review of understanding electrocatalytic reactions in energy conversion and energy storage systems via scanning electrochemical microscopy
2
作者 Jihye Park Jong Hwan Lim +4 位作者 Jin-Hyuk Kang Jiheon Lim Ho Won Jang Hosun Shin Sun Hwa Park 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期155-177,共23页
To address climate change and promote environmental sustainability,electrochemical energy conversion and storage systems emerge as promising alternative to fossil fuels,catering to the escalating demand for energy.Ach... To address climate change and promote environmental sustainability,electrochemical energy conversion and storage systems emerge as promising alternative to fossil fuels,catering to the escalating demand for energy.Achieving optimal energy efficiency and cost competitiveness in these systems requires the strategic design of electrocatalysts,coupled with a thorough comprehension of the underlying mechanisms and degradation behavior occurring during the electrocatalysis processes.Scanning electrochemical microscopy(SECM),an analytical technique for studying surface electrochemically,stands out as a powerful tool offering electrochemical insights.It possesses remarkable spatiotemporal resolution,enabling the visualization of the localized electrochemical activity and surface topography.This review compiles crucial research findings and recent breakthroughs in electrocatalytic processes utilizing the SECM methodology,specifically focusing on applications in electrolysis,fuel cells,and metal–oxygen batteries within the realm of energy conversion and storage systems.Commencing with an overview of each energy system,the review introduces the fundamental principles of SECM,and aiming to provide new perspectives and broadening the scope of applied research by describing the major research categories within SECM. 展开更多
关键词 scanning electrochemical microscopy ELECTROCATALYST ELECTROCATALYSIS Water splitting Fuel cell Metal-oxygen battery
下载PDF
Correlating the Interfacial Polar-Phase Structure to the Local Chemistry in Ferroelectric Polymer Nanocomposites by Combined Scanning Probe Microscopy
3
作者 Jiajie Liang Shaojie Wang +4 位作者 Zhen Luo Jing Fu Jun Hu Jinliang He Qi Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第1期80-93,共14页
Ferroelectric polymer nanocomposites possess exceptional electric properties with respect to the two otherwise uniform phases,which is commonly attributed to the critical role of the matrix-particle interfacial region... Ferroelectric polymer nanocomposites possess exceptional electric properties with respect to the two otherwise uniform phases,which is commonly attributed to the critical role of the matrix-particle interfacial region.However,the structure-property correlation of the interface remains unestablished,and thus,the design of ferroelectric polymer nanocompos-ite has largely relied on the trial-and-error method.Here,a strategy that combines multi-mode scanning probe microscopy-based electrical charac-terization and nano-infrared spectroscopy is developed to unveil the local structure-property correlation of the interface in ferroelectric polymer nano-composites.The results show that the type of surface modifiers decorated on the nanoparticles can significantly influence the local polar-phase content and the piezoelectric effect of the polymer matrix surrounding the nano-particles.The strongly coupled polar-phase content and piezoelectric effect measured directly in the interfacial region as well as the computed bonding energy suggest that the property enhancement originates from the formation of hydrogen bond between the surface modifiers and the ferroelectric polymer.It is also directly detected that the local domain size of the ferroelectric polymer can impact the energy level and distribution of charge traps in the interfacial region and eventually influence the local dielectric strength. 展开更多
关键词 INTERFACES Ferroelectric polymers NANOCOMPOSITES scanning probe microscopy Nano-infrared spectroscopy
下载PDF
Corrosion behavior of aluminum alloys in Na_2SO_4 solution using the scanning electrochemical microscopy technique 被引量:8
4
作者 He-rong Zhou Xiao-gang Li +2 位作者 Chao-fang Dong Kui Xiao Tai Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2009年第1期84-88,共5页
The corrosion behavior of aluminum alloys 1060 and 2A12 in a 10 mM Na2SO4+5 mM KI solution was investigated by scanning electrochemical microscopy (SECM) and scanning electron microscopy (SEM). The potential topo... The corrosion behavior of aluminum alloys 1060 and 2A12 in a 10 mM Na2SO4+5 mM KI solution was investigated by scanning electrochemical microscopy (SECM) and scanning electron microscopy (SEM). The potential topography and corrosion morphology results show that the potential of the sample surface over the same area changes with the increase of immersion time. The corrosion area becomes large, and the potential becomes more negative. The corrosion potential of the 2A12 alloy surface is lower than that of 1060 aluminum, and 2A12 alloy becomes easily corrosive. This is the reason that preferential dissolution in the boundary region of some intermetallic particles (IMPs) occurs and different dissolution behaviors are associated with different types of IMPs because of different potentials. 展开更多
关键词 aluminum alloys corrosion behavior intermetallic particles scanning electrochemical microscopy (SECM)
下载PDF
Imaging of Activity of Horseradish Peroxidase at β-Cyclodextrin Polymer by Scanning Electrochemical Microscopy 被引量:13
5
作者 XiaoLeiWANG YongXiangSHI +1 位作者 ZengLiangBAI WenRuiJIN 《Chinese Chemical Letters》 SCIE CAS CSCD 2004年第2期214-215,共2页
The activity of horseradish peroxidase at b-cyclodextrin polymer was imaged by scanning electrochemical microscopy using 3, 3', 5, 5'-tetramethylbenzide and H2O2 as the substrates.
关键词 scanning electrochemical microscopy horseradish peroxidase.
下载PDF
Multi-objective Optimal Design of High Frequency Probe for Scanning Ion Conductance Microscopy 被引量:2
6
作者 GUO Renfei ZHUANG Jian +2 位作者 MA Li LI Fei YU Dehong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第1期195-203,共9页
Scanning ion conductance microscopy(SICM) is an emerging non-destructive surface topography characterization apparatus with nanoscale resolution. However, the low regulating frequency of probe in most existing modul... Scanning ion conductance microscopy(SICM) is an emerging non-destructive surface topography characterization apparatus with nanoscale resolution. However, the low regulating frequency of probe in most existing modulated current based SICM systems increases the system noise, and has difficulty in imaging sample surface with steep height changes. In order to enable SICM to have the capability of imaging surfaces with steep height changes, a novel probe that can be used in the modulated current based bopping mode is designed. The design relies on two piezoelectric ceramics with different travels to separate position adjustment and probe frequency regulation in the Z direction. To fiarther improve the resonant frequency of the probe, the material and the key dimensions for each component of the probe are optimized based on the multi-objective optimization method and the finite element analysis. The optimal design has a resonant frequency of above 10 kHz. To validate the rationality of the designed probe, microstructured grating samples are imaged using the homebuilt modulated current based SICM system. The experimental results indicate that the designed high frequency probe can effectively reduce the spike noise by 26% in the average number of spike noise. The proposed design provides a feasible solution for improving the imaging quality of the existing SICM systems which normally use ordinary probes with relatively low regulating frequency. 展开更多
关键词 scanning ion conductance microscopy(SICM) multi-objective optimization high frequency probe finite element analysis imaging quality
下载PDF
Scanning tunneling microscopic investigation on morphology of magnetic Weyl semimetal YbMnBi2 被引量:1
7
作者 朱朕 严冬 +10 位作者 聂晓昂 徐豪科 杨旭 管丹丹 王世勇 李耀义 刘灿华 刘军伟 罗惠霞 郑浩 贾金锋 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第7期87-90,共4页
YbMnBi2 is a recently discovered time-reversal-symmetry breaking type-Ⅱ Weyl semimetal.However, as a representation of the new category of topological matters, the scanning tunneling microcopy(STM) results on such im... YbMnBi2 is a recently discovered time-reversal-symmetry breaking type-Ⅱ Weyl semimetal.However, as a representation of the new category of topological matters, the scanning tunneling microcopy(STM) results on such important material are still absent.Here, we report the STM investigations on the morphology of vacuum cleaved single crystalline YbMnBi2 samples.A hill and valley type of topography is observed on the YbMnBi2 surface, which is consistent with the non-layer nature of its crystal structure.Analysis of STM images yields the information of the index of the vicinal surface.Our results here lay a playground of future atomic scale research on YbMnBi2. 展开更多
关键词 WEYL SEMIMETAL topological INSULATOR scanning TUNNELING microscopy
下载PDF
Non-invasive and low-artifact in vivo brain imaging by using a scanning acoustic-photoacoustic dual mode microscopy 被引量:2
8
作者 陈文天 陶超 +3 位作者 胡仔仲 袁松涛 刘庆淮 刘晓峻 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第4期385-393,共9页
Photoacoustic imaging is a potential candidate for in vivo brain imaging,whereas,its imaging performance could be degraded by inhomogeneous multi-layered media,consisted of scalp and skull.In this work,we propose a lo... Photoacoustic imaging is a potential candidate for in vivo brain imaging,whereas,its imaging performance could be degraded by inhomogeneous multi-layered media,consisted of scalp and skull.In this work,we propose a low-artifact photoacoustic microscopy(LAPAM)scheme,which combines conventional acoustic-resolution photoacoustic microscopy with scanning acoustic microscopy to suppress the reflection artifacts induced by multi-layers.Based on similar propagation characteristics of photoacoustic signals and ultrasonic echoes,the ultrasonic echoes can be employed as the filters to suppress the reflection artifacts to obtain low-artifact photoacoustic images.Phantom experiment is used to validate the effectiveness of this method.Furthermore,LAPAM is applied for in-vivo imaging mouse brain without removing the scalp and the skull.Experimental results show that the proposed method successfully achieves the low-artifact brain image,which demonstrates the practical applicability of LAPAM.This work might improve the photoacoustic imaging quality in many biomedical applications which involve tissues with complex acoustic properties,such as brain imaging through scalp and skull. 展开更多
关键词 photoacoustic microscopy scanning acoustic microscopy NONINVASIVE low-artifact brain imaging
下载PDF
50 years of scanning electron microscopy of bone——a comprehensive overview of the important discoveries made and insights gained into bone material properties in health,disease,and taphonomy 被引量:2
9
作者 Furqan A.Shah Krisztina Ruscsák Anders Palmquist 《Bone Research》 SCIE CAS CSCD 2019年第2期123-137,共15页
Bone is an architecturally complex system that constantly undergoes structural and functional optimisation through renewal and repair.The scanning electron microscope (SEM) is among the most frequently used instrument... Bone is an architecturally complex system that constantly undergoes structural and functional optimisation through renewal and repair.The scanning electron microscope (SEM) is among the most frequently used instruments for examining bone.It offers the key advantage of very high spatial resolution coupled with a large depth of field and wide field of view.Interactions between incident electrons and atoms on the sample surface generate backscattered electrons,secondary electrons,and various other signals including X-rays that relay compositional and topographical information.Through selective removal or preservation of specific tissue components (organic,inorganic,cellular,vascular),their individual contribution(s) to the overall functional competence can be elucidated.With few restrictions on sample geometry and a variety of applicable sample-processing routes,a given sample may be conveniently adapted for multiple analytical methods.While a conventional SEM operates at high vacuum conditions that demand clean,dry,and electrically conductive samples,non-conductive materials (e.g.,bone) can be imaged without significant modification from the natural state using an environmental scanning electron microscope.This review highlights important insights gained into bone microstructure and pathophysiology,bone response to implanted biomaterials,elemental analysis,SEM in paleoarchaeology,3D imaging using focused ion beam techniques,correlative microscopy and in situ experiments.The capacity to image seamlessly across multiple length scales within the meso-micro-nano-continuum,the SEM lends itself to many unique and diverse applications,which attest to the versatility and user-friendly nature of this instrument for studying bone.Significant technological developments are anticipated for analysing bone using the SEM. 展开更多
关键词 scanning electron microscopy COMPREHENSIVE OVERVIEW important discoveries
下载PDF
Comparison of scanning electron microscopy findings regarding biofilm colonization with microbiological results in nasolacrimal stents for external, endoscopic and transcanalicular dacryocystorhinostomy 被引量:1
10
作者 Melike Balikoglu-Yilmaz Tolga Yilmaz +4 位作者 Sule Cetinel Umit Taskin Ayse Banu Esen Muhittin Taskapili Timur Kose 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2014年第3期534-540,共7页
AIM:To compare bacterial biofilm colonization in lacrimal stents following external dacryocystorhinostomy(EX-DCR),endoscopic dacryocystorhinostomy(EN-DCR),and transcanalicular dacryocystorhinostomy(TC-DCR)with multidi... AIM:To compare bacterial biofilm colonization in lacrimal stents following external dacryocystorhinostomy(EX-DCR),endoscopic dacryocystorhinostomy(EN-DCR),and transcanalicular dacryocystorhinostomy(TC-DCR)with multidiode laser.METHODS:This prospective study included 30consecutive patients with nasolacrimal duct obstruction who underwent EXT-,EN-,or TC-DCR.Thirty removed lacrimal stent fragments and conjunctival samples were cultured.The lacrimal stent biofilms were examined by scanning electron microscopy(SEM).RESULTS:Eleven(36.7%)of the 30 lacrimal stent cultures were positive for aerobic bacteria(most commonly Staphylococcus epidermidis and Pseudomonas aeruginosa).However anaerobic bacteria and fungi were not identified in the lacrimal stent cultures.Twenty-seven(90%)patients had biofilmpositive lacrimal stents.The conjunctival culture positivity after the DCR,biofilm positivity on stents,the grade of biofilm colonization,and the presence of mucus and coccoid and rod-shaped organisms did not significantly differ between any of the groups(P】0.05).However,a significant difference was found when the SEM results were compared to the results of the lacrimal stent and conjunctival cultures(P【0.001).CONCLUSION:Type of dacryocystorhinostomy(DCR)surgery did not affect the biofilm colonization of the lacrimal stents.SEM also appears to be more precise than microbiological culture for evaluating the presence of biofilms on lacrimal stents. 展开更多
关键词 biofilms nasolacrimal duct obstruction EPIPHORA DACRYOCYSTITIS scanning electron microscopy
下载PDF
Bacterial entombment by intratubular mineralization following orthograde mineral trioxide aggregate obturation: a scanning electron microscopy study 被引量:5
11
作者 Jun Sang Yoo Seok-Woo Chang +8 位作者 So Ram Oh Hiran Perinpanayagam Sang-Min Lim Yeon-Jee Yoo Yeo-Rok Oh Sang-Bin Woo Seung-Hyun Han Qiang Zhu Kee-Yeon Kum 《International Journal of Oral Science》 SCIE CAS CSCD 2014年第4期227-232,共6页
The time domain entombment of bacteria by intratubular mineralization following orthograde canal obturation with mineral trioxide aggregate(MTA) was studied by scanning electron microscopy(SEM). Single-rooted huma... The time domain entombment of bacteria by intratubular mineralization following orthograde canal obturation with mineral trioxide aggregate(MTA) was studied by scanning electron microscopy(SEM). Single-rooted human premolars(n560) were instrumented to an apical size #50/0.06 using ProF ile and treated as follows: Group 1(n510) was filled with phosphate buffered saline(PBS); Group 2(n510) was incubated with Enterococcus faecalis for 3 weeks, and then filled with PBS; Group 3(n520) was obturated orthograde with a paste of OrthoM TA(BioM TA, Seoul, Korea) and PBS; and Group 4(n520) was incubated with E. faecalis for 3 weeks and then obturated with OrthoM TA–PBS paste. Following their treatments, the coronal openings were sealed with PBS-soaked cotton and intermediate restorative material(IRM), and the roots were then stored in PBS for 1, 2, 4, 8 or 16 weeks. After each incubation period, the roots were split and their dentin/MTA interfaces examined in both longitudinal and horizontal directions by SEM. There appeared to be an increase in intratubular mineralization over time in the OrthoM TA-filled roots(Groups 3 and 4). Furthermore, there was a gradual entombment of bacteria within the dentinal tubules in the E. faecalis inoculated MTA-filled roots(Group 4). Therefore, the orthograde obturation of root canals with OrthoM TA mixed with PBS may create a favorable environment for bacterial entombment by intratubular mineralization. 展开更多
关键词 bacterial entombment intratubular mineralization orthograde canal obturation scanning electron microscopy tag-like structure
下载PDF
EFFECT OF THE TOTAL SAPONIN OF DIPSACUS ASPER ON INTRACELLULAR FREE CALCIUM CONCENTRATION IN THE CELLULAR MODEL OF ALZHEIMER'S DISEASE-SCANNING CONFOCAL MICROSCOPY 被引量:2
12
作者 钱亦华 任惠民 +3 位作者 胡海涛 刘勇 杨广德 王春梅 《Academic Journal of Xi'an Jiaotong University》 2001年第2期159-163,共5页
Objective To study the effect of ginsenoside Rb1 and total saponin of dipsacus asper on intracellular free calcium concentration mediated by β amyloid protein.So as to lay a foundation for developing effective Chines... Objective To study the effect of ginsenoside Rb1 and total saponin of dipsacus asper on intracellular free calcium concentration mediated by β amyloid protein.So as to lay a foundation for developing effective Chinese traditional medicine to treat Alzheimer’s disease.Methods The technique of laser scanning confocal microscopy combining primary cultured neurons was adopted to quantitatively analyze the change of [Ca 2+ ] i.Results The [Ca 2+ ] i of primary cultured hippocampal neurons was nmol·L -1 on basal levels.Control group showed obvious change of calcium vibration,[Ca 2+ ] i was elevated to nmol·L -1 .The peak of [Ca 2+ ] i of Rb1 group reached nmol·L -1 and was lower than that of control group .The tSDA group displayed distinct change of calcium vibration too,and [Ca 2+ ] i reached nmol·L -1 .There was a significant difference in [Ca 2+ ] i between control and tSDA group .Conclusion The research indicated that one of mechanisms by which Rb1 and tSDA protected the neurons was to maintain the balance of [Ca 2+ ] i. 展开更多
关键词 cultured neurons β amyloid protein Alzheimer’s disease scanning confocal microscopy
下载PDF
The scanning tunneling microscopy and spectroscopy of GaSb_(1-x)Bi_(x) films of a few-nanometer thickness grown by molecular beam epitaxy 被引量:2
13
作者 Fangxing Zha Qiuying Zhang +4 位作者 Haoguang Dai Xiaolei Zhang Li Yue Shumin Wang Jun Shao 《Journal of Semiconductors》 EI CAS CSCD 2021年第9期42-46,共5页
The ultrahigh vacuum scanning tunneling microscope(STM)was used to characterize the GaSb_(1-x)Bi_(x) films of a few nanometers thickness grown by the molecular beam epitaxy(MBE)on the GaSb buffer layer of 100 nm with ... The ultrahigh vacuum scanning tunneling microscope(STM)was used to characterize the GaSb_(1-x)Bi_(x) films of a few nanometers thickness grown by the molecular beam epitaxy(MBE)on the GaSb buffer layer of 100 nm with the GaSb(100)substrates.The thickness of the GaSb_(1-x)Bi_(x) layers of the samples are 5 and 10 nm,respectively.For comparison,the GaSb buffer was also characterized and its STM image displays terraces whose surfaces are basically atomically flat and their roughness is generally less than 1 monolayer(ML).The surface of 5 nm GaSb_(1-x)Bi_(x) film reserves the same terraced morphology as the buffer layer.In contrast,the morphology of the 10 nm GaSb_(1-x)Bi_(x) film changes to the mound-like island structures with a height of a few MLs.The result implies the growth mode transition from the two-dimensional mode as displayed by the 5 nm film to the Stranski-Krastinov mode as displayed by the 10 nm film.The statistical analysis with the scanning tunneling spectroscopy(STS)measurements indicates that both the incorporation and the inhomogeneity of Bi atoms increase with the thickness of the GaSb_(1-x)Bi_(x) layer. 展开更多
关键词 scanning tunneling microscopy molecular beam epitaxy semiconductor surface
下载PDF
Scanning transmission electron microscopy: A review of high angle annular dark field and annular bright field imaging and applications in lithium-ion batteries 被引量:1
14
作者 仝毓昕 张庆华 谷林 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第6期23-34,共12页
Scanning transmission electron microscopy(STEM) has been shown as powerful tools for material characterization,especially after the appearance of aberration-corrector which greatly enhances the resolution of STEM. H... Scanning transmission electron microscopy(STEM) has been shown as powerful tools for material characterization,especially after the appearance of aberration-corrector which greatly enhances the resolution of STEM. High angle annular dark field(HAADF) and annular bright field(ABF) imaging of the aberration-corrected STEM are widely used due to their high-resolution capabilities and easily interpretable image contrasts. However, HAADF mode of the STEM is still limited in detecting light elements due to the weak electron-scattering power. ABF mode of the STEM could detect light and heavy elements simultaneously, providing unprecedented opportunities for probing unknown structures of materials. Atomiclevel structure investigation of materials has been achieved by means of these imaging modes, which is invaluable in many fields for either improving properties of materials or developing new materials. This paper aims to provide a introduction of HAADF and ABF imaging techniques and reviews their applications in characterization of cathode materials, study of electrochemical reaction mechanisms, and exploring the effective design of lithium-ion batteries(LIBs). The future prospects of the STEM are also discussed. 展开更多
关键词 scanning transmission electron microscopy high angle annular dark field annular bright field lithium-ion batteries
下载PDF
SCANNING TUNNELING MICROSCOPY OF (CrFe)7C3 被引量:1
15
《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1995年第1期19-22,共4页
The microstructure of(CrFe)_7C_3 has been studied with scanning tunneling microscopy.It shows that a carbide consists of colonies which are full of stacking faults. The stacking faults in one colony are parallel while... The microstructure of(CrFe)_7C_3 has been studied with scanning tunneling microscopy.It shows that a carbide consists of colonies which are full of stacking faults. The stacking faults in one colony are parallel while those in different colonies lie at angle with each other. 展开更多
关键词 scanning tunneling microscopy stacking fault (CrFe)_7C_3
下载PDF
Functional Microvascular Anatomy of the Horse Eye: A Scanning Electron Microscopic Study of Corrosion Casts 被引量:1
16
作者 Hiroyoshi Ninomiya Tomo Inomata 《Open Journal of Veterinary Medicine》 2014年第5期91-101,共11页
Objective: This study presents the microvasculature of the horse iris, ciliary process, retina, and choroid and discusses the functional significance of the vasculature. Procedure: Seven horses were used for this stud... Objective: This study presents the microvasculature of the horse iris, ciliary process, retina, and choroid and discusses the functional significance of the vasculature. Procedure: Seven horses were used for this study. The ocular vascular system was injected with methylmethacrylate resin via the carotid artery, and the vascular corrosion casts were observed using a scanning electron microscope. Results: The iridial vessels showed a wavy course. The ciliary process was supplied by 2 arterial routes: the iridial and ciliary arterial circles. The subjects displayed a paurangiotic retina with retinal vessels extending only a short distance around the disc. The retinal arterioles and venules ran in closely related pairs, and the capillaries formed hairpin loops. No central retinal artery was seen in the equine eyes examined. The choriocapillaris in the avascular retina was arranged in honeycomb hexagon lobules and formed a more densely packed network than that in the vascular retina. There were 2 distinct venous drainage systems in the horse choroid: the vortex veins and the posterior ciliary veins. The vortex vein ampulla was flattened and showed a slit-like lumen at the merge site with the ophthalmic vein. The vortex veins demonstrated a marked constriction before leaving the eye. Discussion: The 2 choroidal drainage systems may compensate each other in event of occlusion. The ampulla and the constriction in the vortex veins may act as a valve regulating the blood flow to keep the eye at an optimum size and the intraocular pressure within the normal physiological range. 展开更多
关键词 CORROSION CAST Eye HORSE MICROVASCULATURE scanning Electron microscopy
下载PDF
Large-field objective lens for multi-wavelength microscopy at mesoscale and submicron resolution
17
作者 Xin Xu Qin Luo +7 位作者 Jixiang Wang Yahui Song Hong Ye Xin Zhang Yi He Minxuan Sun Ruobing Zhang Guohua Shi 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第6期41-56,共16页
Conventional microscopes designed for submicron resolution in biological research are hindered by a limited field of view,typically around 1 mm.This restriction poses a challenge when attempting to simultaneously anal... Conventional microscopes designed for submicron resolution in biological research are hindered by a limited field of view,typically around 1 mm.This restriction poses a challenge when attempting to simultaneously analyze various parts of a sample,such as different brain areas.In addition,conventional objective lenses struggle to perform consistently across the required range of wavelengths for brain imaging in vivo.Here we present a novel mesoscopic objective lens with an impressive field of view of 8 mm,a numerical aperture of 0.5,and a working wavelength range from 400 to 1000 nm.We achieved a resolution of 0.74μm in fluorescent beads imaging.The versatility of this lens was further demonstrated through high-quality images of mouse brain and kidney sections in a wide-field imaging system,a confocal laser scanning system,and a two-photon imaging system.This mesoscopic objective lens holds immense promise for advancing multi-wavelength imaging of large fields of view at high resolution. 展开更多
关键词 mesoscopic objective lens large field-of-view high resolution MULTI-WAVELENGTH wide-field microscopy confocal laser scanning microscopy
下载PDF
Real-space observation on standing configurations of phenylacetylene on Cu(111) by scanning probe microscopy
18
作者 戚竞 高艺璇 +4 位作者 黄立 林晓 董佳家 杜世萱 高鸿钧 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第6期338-342,共5页
The adsorption configurations of molecules adsorbed on substrates can significantly affect their physical and chemical properties. A standing configuration can be difficult to determine by traditional techniques, such... The adsorption configurations of molecules adsorbed on substrates can significantly affect their physical and chemical properties. A standing configuration can be difficult to determine by traditional techniques, such as scanning tunneling microscopy(STM) due to the superposition of electronic states. In this paper, we report the real-space observation of the standing adsorption configuration of phenylacetylene on Cu(111) by non-contact atomic force microscopy(nc-AFM).Deposition of phenylacetylene at 25 K shows featureless bright spots in STM images. Using nc-AFM, the line features representing the C–H and C–C bonds in benzene rings are evident, which implies a standing adsorption configuration. Further density functional theory(DFT) calculations reveal multiple optimized adsorption configurations with phenylacetylene breaking its acetylenic bond and forming C–Cu bond(s) with the underlying copper atoms, and hence stand on the substrate.By comparing the nc-AFM simulations with the experimental observation, we identify the standing adsorption configuration of phenylacetylene on Cu(111). Our work demonstrates an application of combining nc-AFM measurements and DFT calculations to the study of standing molecules on substrates, which enriches our knowledge of the adsorption behaviors of small molecules on solid surfaces at low temperatures. 展开更多
关键词 PHENYLACETYLENE adsorption configuration scanning probe microscopy density functional theory
下载PDF
Adsorption behavior of triphenylene on Ru(0001) investigated by scanning tunneling microscopy
19
作者 井立威 宋俊杰 +4 位作者 张羽溪 陈乔悦 黄凯凯 张寒洁 何丕模 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第7期407-412,共6页
As a representative of small aromatic molecules, triphenylene(TP) has markedly high carrier mobility and is an ideal precursor for building graphene nanostructures. We mainly investigated the adsorption behavior of TP... As a representative of small aromatic molecules, triphenylene(TP) has markedly high carrier mobility and is an ideal precursor for building graphene nanostructures. We mainly investigated the adsorption behavior of TP molecules on Ru(0001) by using scanning tunneling microscopy(STM). In submonolayer regime, TP molecules are randomly dispersed on Ru(0001) and the TP overlayer can be thoroughly dehydrogenated and converted into graphene islands at 700 K. Due to weak interaction between TP molecules and graphene, the grooves formed among graphene islands have confinement effect on TP molecules. TP adopts a flat-lying adsorption mode and has two adsorption configurations with the 3-fold molecular axis aligned almost parallel or antiparallel to the ■ direction of the substrate. At TP coverages of 0.6 monolayer(ML)and 0.8 ML, the orientational distributions of the two adsorption configurations are equal. At about 1.0 ML, we find the coexistence of locally ordered and disordered phases. The ordered phase includes two sets of different superstructures with the symmetries of ■R23.41° and p(4 × 4), respectively. The adsorption behavior of TP on Ru(0001) can be attributed to the delicate balance between molecule–substrate and molecule–molecule interactions. 展开更多
关键词 SELF-ASSEMBLY ORDERED SUPERSTRUCTURE scanning TUNNELING microscopy
下载PDF
Microscopic Analysis of Cementitious Sand and Gravel Damming Materia
20
作者 Ran Wang Aimin Gong +4 位作者 Shanqing Shao Baoli Qu Jing Xu Fulai Wang Feipeng Liu 《Fluid Dynamics & Materials Processing》 EI 2024年第4期749-769,共21页
The mechanical properties of cementitious sand and gravel damming material have been experimentally determined by means of microscopic SEM(Scanning Electron Microscopy)image analysis.The results show that the combinat... The mechanical properties of cementitious sand and gravel damming material have been experimentally determined by means of microscopic SEM(Scanning Electron Microscopy)image analysis.The results show that the combination of fly ash and water can fill the voids in cemented sand and gravel test blocks because of the presence of hydrated calcium silicate and other substances;thereby,the compactness and mechanical properties of these materials can be greatly improved.For every 10 kg/m^(3) increase in the amount of cementitious material,the density increases by about 2%,and the water content decreases by 0.2%.The amount of cementitious material used in the sand and gravel in these tests was 80-110 kg/m^(3),the water-binder ratio was 1-1.50.Moreover,the splitting tensile strength was 1/10 of the compressive strength,and the maximum strength was 7.42 MPa at 90 d.The optimal mix ratio has been found to be 50 kg of cement,60 kg of fly ash and 120 kg of water(C50F60W120).The related dry density was 2.6 g/cm^(3),the water content was 6%,and the water-binder ratio was 1.09. 展开更多
关键词 Cementitious sand gravel material scanning electron microscopy optimal mix ratio maximum strength
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部