期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
On the Mechanical Analysis and Control for the Tension System of the Cylindrical Filament Winding
1
作者 Hua Su Xi’an Zhang 《Journal of Textile Science and Technology》 2016年第2期7-15,共9页
The constant winding tension can make the filament arranged in order. The stress distribution between the filament balance fully gives play to the enhancement of filament, and increases the intensive workload of the c... The constant winding tension can make the filament arranged in order. The stress distribution between the filament balance fully gives play to the enhancement of filament, and increases the intensive workload of the composite winding material. This paper conducts the mechanical analysis for the unwinding roller and tension measuring roller of the cylindrical winding machine so that gets the mechanical model, gives error compensation formula caused by the radius change of the yarn group in the unwinding side, designs the closed-loop control system and utilizes the dynamical- integral PID control strategy to achieve the tension control during the process of the cylindrical winding. 展开更多
关键词 filament winding Cylindrical winding winding Tension Dynamical-Integral PID Closed-Loop Control
下载PDF
Strain-Rate Dependency of a Unidirectional Filament Wound Composite under Compression
2
作者 Stepan Konev Victor A.Eremeyev +5 位作者 Hamid M.Sedighi Leonid Igumnov Anatoly Bragov Aleksandr Konstantinov Ayaulym Kuanyshova Ivan Sergeichev 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第12期2149-2161,共13页
This article presents the results of experimental studies concerning the dynamic deformation and failure of a unidirectional carbon fiber reinforced plastic(T700/LY113)under compression.The test samples were manufactu... This article presents the results of experimental studies concerning the dynamic deformation and failure of a unidirectional carbon fiber reinforced plastic(T700/LY113)under compression.The test samples were manufactured through the filament winding of flat plates.To establish the strain rate dependencies of the strength and elastic modulus of the material,dynamic tests were carried out using a drop tower,the Split Hopkinson Pressure Bar method,and standard static tests.The samples were loaded both along and perpendicular to the direction of the reinforcing fiber.The applicability of the obtained samples for static and dynamic tests was confirmed through finite elementmodeling and the high-speed imaging of the deformation and failure of samples during testing.As a result of the conducted experimental studies,static and dynamic stress-strain curves,time dependencies of deformation and the stress and strain rates of the samples during compression were obtained.Based on these results,the strain rate dependencies of the strength and elasticity modulus in the strain rate range of 0.001-6001/s are constructed.It is shown that the strain rate significantly affects the strength and deformation characteristics of the unidirectional carbon fiber composites under compression.An increase in the strain rate by 5 orders of magnitude increased the strength and elastic modulus along the fiber direction by 42%and 50%,respectively.Perpendicular loading resulted in a strength and elastic modulus increase by 58%and 50%,respectively.The average strength along the fibers at the largest studied strain rate was about 1000MPa.The obtained results can be used to design structural elements made of polymer composite materials operating under dynamic shock loads,as well as to build models of mechanical behavior and failure criteria of such materials,taking into account the strain rate effects. 展开更多
关键词 High strain rate COMPOSITES filament winding dynamic strength Split Hopkinson Pressure Bar compression
下载PDF
Analysis for the residual prestress of composite barrel for railgun with tension winding 被引量:1
3
作者 Dong-mei Yin Bao-ming Li Hong-cheng Xiao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第4期893-899,共7页
Based on the elastic theory of cylindrical shells and the theory of composite laminates,a prediction model for the residual prestress of the simplified round composite barrel for railgun is established.Only the fibre ... Based on the elastic theory of cylindrical shells and the theory of composite laminates,a prediction model for the residual prestress of the simplified round composite barrel for railgun is established.Only the fibre pretension is considered in this model.A three dimensional numerical simulation for the residual prestress in the railgun barrel is carried out,by combining the temperature differential method with the element birth and death technology.The results obtained by the two methods are compared.It reveals that the distribution trends of residual prestress are consistent.And the difference for residual prestress in the filament wound composite housing of barrel is relatively small.The same finite element method is used to analysis the residual prestress in the non-simplified composite barrels for railgun,which are under different control modes of winding tension.The results mean that the residual prestress in barrel will increase while the taper coefficient for winding is decreasing.Therefore,the sealing performance in bore is improved,but the strength of the filament wound composite housing drops.In addition,the axial and circumferential residual prestress in the filament wound composite housing with constant torque winding are close to the ones in iso-stress design for barrel. 展开更多
关键词 RAILGUN BARREL Composite materials filament winding winding tension Residual prestress
下载PDF
GFRP Poles for Traffic Signs and Signal Poles: A Case Study in Saudi Arabia
4
作者 Waseem Ahmad Khatri Muhammed Al Mehthel +1 位作者 Mirza M. Baig Tariq Al Baker 《Open Journal of Civil Engineering》 CAS 2022年第4期476-491,共16页
GFRP poles have been widely used as lighting poles but their use as traffic signs and signal poles is still under development. This paper highlights the literature review and case study of using GFRP poles for traffic... GFRP poles have been widely used as lighting poles but their use as traffic signs and signal poles is still under development. This paper highlights the literature review and case study of using GFRP poles for traffic signs and signal poles in the Eastern Province of Saudi Arabia. The case study details the design of poles, construction, maintenance and their performance. Traffic sign poles were manufactured using filament winding and signal poles using pultrusion process. AASHTO Standard “Specifications for Structural Supports for Highway Signs, Luminaires and Traffic Signals” and ANSI 136.2. were used as materials specification and design for the pole. There is a need to develop dedicated design and construction guidelines to standardize the construction process. Further study about the crash resistance of GFRP poles at different speeds needs to be explored. In addition, the paper presents a high level comparison between the different materials like weight, safety, environmental degradation, strength, service life, durability in an aggressive environment, carbon footprint and economics. 展开更多
关键词 Glass Fiber Reinforced Plastics (GFRP) POLES FOUNDATIONS filament winding PULTRUSION
下载PDF
Structural optimization of filament wound composite pipes
5
作者 Roham RAFIEE Reza SHAHZADI Hossein SPERESP 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2022年第8期1056-1069,共14页
An optimization procedure is developed for obtaining optimal structural design of filament wound composite pipes with minimum cost utilized in pressurized water and waste-water pipelines.First,the short-term and long-... An optimization procedure is developed for obtaining optimal structural design of filament wound composite pipes with minimum cost utilized in pressurized water and waste-water pipelines.First,the short-term and long-term design constraints dictated by international standards are identified.Then,proper computational tools are developed for predicting the structural properties of the composite pipes based on the design architecture of layers.The developed computational tools are validated by relying on experimental analysis.Then,an integrated design-optimization process is developed to minimize the price as the main objective,taking into account design requirements and manufacturing limitations as the constraints and treating lay-up sequence,fiber volume fraction,winding angle,and the number of total layers as design variables.The developed method is implemented in various case studies,and the results are presented and discussed. 展开更多
关键词 composite pipes OPTIMIZATION experimental validation computational modeling filament winding
原文传递
Multi-objective optimization of different dome reinforcement methods for composite cases
6
作者 Lei ZU Hui XU +7 位作者 Shijun CHEN Jingxuan HE Qian ZHANG Ping REN Guiming ZHANG Liqiang WANG Qiaoguo WU Jianhui FU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第4期299-314,共16页
A multi-objective optimization method was proposed for different dome reinforcement methods of a filament-wound solid rocket motor composite case based on a Radial Basis Function(RBF)model.Progressive damage of the co... A multi-objective optimization method was proposed for different dome reinforcement methods of a filament-wound solid rocket motor composite case based on a Radial Basis Function(RBF)model.Progressive damage of the composite case was considered in a simulation based on Hashin failure criteria,and simulation results were validated by hydraulic burst tests to precisely predict the failure mode,failure position,and burst pressure.An RBF surrogate model was estab-lished and evaluated by Relative Average Absolute Error(RAAE),Relative Maximum Absolute Error(RMAE),Root Mean Squared Error(RMSE),and R^(2)methods to improve the optimization efficient of dome reinforcement.In addition,the Non-dominated Sorting Genetic Algorithm(NSGA-II)was employed to establish multi-objective optimization models of variable-angle and variable-polar-radius dome reinforcements to investigate the coupling effect of the reinforcement angle,reinforcement layers,and reinforcement range on the case performance.Optimal reinforce-ment parameters were obtained and used to establish a progressive damage model of the composite case with dome reinforcement.In accordance with progressive damage analysis,the burst pressure and performance factor were obtained.Results illustrated that variable-angle dome reinforcement was the optimal reinforcement method compared with variable-polar-radius dome reinforcement as it could not only ensure the reinforcement angle’s continuous changing but also decrease the mass of composite materials.Compared with the unreinforced case,the reinforced case exhibited an increase in the burst pressure and performance factor of 36.1%and 23.5%,respectively. 展开更多
关键词 Carbon fibers Damage mechanics FAILURE filament winding Mechanical properties
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部