The dispersion and filler network of fibrillar silicate(FS) in elastomers were studied. The results showed that a good dispersion of FS in matrix during mechanical blending in unvulcanized composites contributed to ...The dispersion and filler network of fibrillar silicate(FS) in elastomers were studied. The results showed that a good dispersion of FS in matrix during mechanical blending in unvulcanized composites contributed to a strong FS filler network, different from that of traditional reinforcing fillers. Meanwhile, the filler re-aggregation during vulcanization caused by the overlapping and intertwining of FS further strengthened the filler network. The factors including Mooney viscosity and molecular polarity of elastomer, type and amount of silane coupling agents used for filler modification, that may influence the filler network, were studied. Our study helps us to understand the mechanism for the formation of filler network of FS in elastomers and provides guidance for the preparation of high performance FS/elastomer composites.展开更多
Double-sided weld pool shapes were determined by multiple welding parameters and wire feed parameters during pulsed GTAW with wire filler. Aiming at such a system with multiple inputs and outputs, an effective modelin...Double-sided weld pool shapes were determined by multiple welding parameters and wire feed parameters during pulsed GTAW with wire filler. Aiming at such a system with multiple inputs and outputs, an effective modeling method, consisting of the impulse signal design, model structure and parameter identification and verification, was developed based on MATLAB software. Then, dynamic neural network models, TDNNM (Topside dynamic neural network model) and BHDNNM (Backside width and topside height dynamic neural network model), were established to predict double-sided shape parameters of the weld pool. The characteristic relationship of the welding process was simulated and analyzed with the models.展开更多
The weld pool shape control by intelligent strategy was studied. In order to improve the ability of self-learning and self-adaptation of the ordinary fuzzy control, a self-learning fuzzy neural network controller (FNN...The weld pool shape control by intelligent strategy was studied. In order to improve the ability of self-learning and self-adaptation of the ordinary fuzzy control, a self-learning fuzzy neural network controller (FNNC) for backside width of weld pool in pulsed gas tungsten arc welding (GTAW) with wire filler was designed. In FNNC, the fuzzy system was expressed by an equivalence neural network, the membership functions and inference rulers were decided through the learning of the neural network. Then, the FNNC control arithmetic was analyzed, simulating experiment was done, and the validating experiments on varied heat sink workpiece and varied gap workpiece were implemented. The maximum error between the real value and the given one was 0.39mm, the mean error was 0.014mm, and the root-mean-square was 0.14mm. The real backside width was maintained around the given value. The results show that the self-learning fuzzy neural network control strategy can achieve a perfect control effect under different set values and conditions, and is suitable for the welding process with the varied structure and coefficients of control model.展开更多
The surface of calcium carbonate(CaCO_3)particles was modified with stearic acid(SA)and the chemical structures of the product were characterized by FT-IR analysis.The interaction between polydimethylsiloxane(PDMS)and...The surface of calcium carbonate(CaCO_3)particles was modified with stearic acid(SA)and the chemical structures of the product were characterized by FT-IR analysis.The interaction between polydimethylsiloxane(PDMS)and CaCO_3 fillers with different surface character was investigated by means of dynamic rheological and bound rubber tests for uncured compounds and mechanical properties measurements for the corresponding vulcanites.The results of dynamic tests indicate that with the increase of SA mass fraction...展开更多
According to the configuration and absorption theory of polymer macromolecule materials, a kind of IPN with wider temperature range and higher damping property was designed and synthesized. By using the spectrum of dy...According to the configuration and absorption theory of polymer macromolecule materials, a kind of IPN with wider temperature range and higher damping property was designed and synthesized. By using the spectrum of dynamic mechanical thermal analysis (DMTA) and acoustic pulse tube device, the microstructure, phase separation degree, phase size and phase continuity of IPN with different components were analyzed. The experimental results show that the nano size grade of phase, the continuous and homogeneous IPN phase can provide higher absorption coefficient. The absorption coefficient of optimized sample I09 is 0.7 in 2 kHz, and the absorption peak is 0.9 in 4 kHz. Then the underwater acoustic properties of modified IPN filled with mica, micro-balloon and nano-SiO2 were discussed respectively to indicate that the inhomogeneous property of filler-modified IPN can improve the underwater acoustic stealth performance effectively, and the micro size grade of these filler-modified IPN can work well in low frequency acoustic stealth.展开更多
基金financially supported by the National Science Fund for Distinguished Young Scholars of China(No.51525301)the National Natural Science Foundation of China(No.51373012)the National Basic Research Program of China(No.2015CB654704)
文摘The dispersion and filler network of fibrillar silicate(FS) in elastomers were studied. The results showed that a good dispersion of FS in matrix during mechanical blending in unvulcanized composites contributed to a strong FS filler network, different from that of traditional reinforcing fillers. Meanwhile, the filler re-aggregation during vulcanization caused by the overlapping and intertwining of FS further strengthened the filler network. The factors including Mooney viscosity and molecular polarity of elastomer, type and amount of silane coupling agents used for filler modification, that may influence the filler network, were studied. Our study helps us to understand the mechanism for the formation of filler network of FS in elastomers and provides guidance for the preparation of high performance FS/elastomer composites.
文摘Double-sided weld pool shapes were determined by multiple welding parameters and wire feed parameters during pulsed GTAW with wire filler. Aiming at such a system with multiple inputs and outputs, an effective modeling method, consisting of the impulse signal design, model structure and parameter identification and verification, was developed based on MATLAB software. Then, dynamic neural network models, TDNNM (Topside dynamic neural network model) and BHDNNM (Backside width and topside height dynamic neural network model), were established to predict double-sided shape parameters of the weld pool. The characteristic relationship of the welding process was simulated and analyzed with the models.
文摘The weld pool shape control by intelligent strategy was studied. In order to improve the ability of self-learning and self-adaptation of the ordinary fuzzy control, a self-learning fuzzy neural network controller (FNNC) for backside width of weld pool in pulsed gas tungsten arc welding (GTAW) with wire filler was designed. In FNNC, the fuzzy system was expressed by an equivalence neural network, the membership functions and inference rulers were decided through the learning of the neural network. Then, the FNNC control arithmetic was analyzed, simulating experiment was done, and the validating experiments on varied heat sink workpiece and varied gap workpiece were implemented. The maximum error between the real value and the given one was 0.39mm, the mean error was 0.014mm, and the root-mean-square was 0.14mm. The real backside width was maintained around the given value. The results show that the self-learning fuzzy neural network control strategy can achieve a perfect control effect under different set values and conditions, and is suitable for the welding process with the varied structure and coefficients of control model.
基金The work was financially supported by the National Basic Research Program of China(No.2005CB623800).
文摘The surface of calcium carbonate(CaCO_3)particles was modified with stearic acid(SA)and the chemical structures of the product were characterized by FT-IR analysis.The interaction between polydimethylsiloxane(PDMS)and CaCO_3 fillers with different surface character was investigated by means of dynamic rheological and bound rubber tests for uncured compounds and mechanical properties measurements for the corresponding vulcanites.The results of dynamic tests indicate that with the increase of SA mass fraction...
基金Funded by the National Defense Foundation Item of China
文摘According to the configuration and absorption theory of polymer macromolecule materials, a kind of IPN with wider temperature range and higher damping property was designed and synthesized. By using the spectrum of dynamic mechanical thermal analysis (DMTA) and acoustic pulse tube device, the microstructure, phase separation degree, phase size and phase continuity of IPN with different components were analyzed. The experimental results show that the nano size grade of phase, the continuous and homogeneous IPN phase can provide higher absorption coefficient. The absorption coefficient of optimized sample I09 is 0.7 in 2 kHz, and the absorption peak is 0.9 in 4 kHz. Then the underwater acoustic properties of modified IPN filled with mica, micro-balloon and nano-SiO2 were discussed respectively to indicate that the inhomogeneous property of filler-modified IPN can improve the underwater acoustic stealth performance effectively, and the micro size grade of these filler-modified IPN can work well in low frequency acoustic stealth.