Geochemical analysis of 64 oils sampled from an Ordovician carbonate reservoir in the Tuoputai region was undertaken to study the composition of molecular markers. All the oils have similar geochemical characteristics...Geochemical analysis of 64 oils sampled from an Ordovician carbonate reservoir in the Tuoputai region was undertaken to study the composition of molecular markers. All the oils have similar geochemical characteristics and belong to a single oil family. They are presumed to derive from the same source kitchen and have similar oil charging history. A histogram of homogenization temperatures(Th) of aqueous inclusions in reservoir rocks shows a bimodal distribution pattern, indicating that the Ordovician reservoir has been charged twice. Coupling the measured Th(°C) with the burial and geothermal histories reconstructed using 1D basin modeling, we relate the homogenization temperature to the relevant geological ages: i.e.,425–412 and 9–4 Ma, corresponding to the Middle to Late Silurian and the Miocene to Pliocene, respectively. The oil filling orientation and pathways are traced using molecular indicators related to alkyldibenzothiophenes and benzo[b]naphthothiophenes. The oil charging orientation is from south to north generally. It can be predicted that the Ordovician reservoirs were sourced from a kitchen located to the south of the Tuoputai region, most probably between the Awati and Manjiaer Depressions. Traps located in the southern side of the Tuoputai region, along the oil charging pathways, should therefore be preferred oil exploration targets.展开更多
基金funded by the National Natural Science Foundation of China(Grant No.41272158)the Foundation of State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum,Beijing(No.PRP/open-1503)
文摘Geochemical analysis of 64 oils sampled from an Ordovician carbonate reservoir in the Tuoputai region was undertaken to study the composition of molecular markers. All the oils have similar geochemical characteristics and belong to a single oil family. They are presumed to derive from the same source kitchen and have similar oil charging history. A histogram of homogenization temperatures(Th) of aqueous inclusions in reservoir rocks shows a bimodal distribution pattern, indicating that the Ordovician reservoir has been charged twice. Coupling the measured Th(°C) with the burial and geothermal histories reconstructed using 1D basin modeling, we relate the homogenization temperature to the relevant geological ages: i.e.,425–412 and 9–4 Ma, corresponding to the Middle to Late Silurian and the Miocene to Pliocene, respectively. The oil filling orientation and pathways are traced using molecular indicators related to alkyldibenzothiophenes and benzo[b]naphthothiophenes. The oil charging orientation is from south to north generally. It can be predicted that the Ordovician reservoirs were sourced from a kitchen located to the south of the Tuoputai region, most probably between the Awati and Manjiaer Depressions. Traps located in the southern side of the Tuoputai region, along the oil charging pathways, should therefore be preferred oil exploration targets.