In this paper, we study the propagation of the pattern for a reaction-diffusionchemotaxis model. By using a weakly nonlinear analysis with multiple temporal and spatial scales, we establish the amplitude equations for...In this paper, we study the propagation of the pattern for a reaction-diffusionchemotaxis model. By using a weakly nonlinear analysis with multiple temporal and spatial scales, we establish the amplitude equations for the patterns, which show that a local perturbation at the constant steady state is spread over the whole domain in the form of a traveling wavefront. The simulations demonstrate that the amplitude equations capture the evolution of the exact patterns obtained by numerically solving the considered system.展开更多
During the mining process of impact-prone coal seams,drilling pressure relief can reduce the impact propensity of the coal seam,but it also reduces the integrity and strength of the coal mass at the side of the roadwa...During the mining process of impact-prone coal seams,drilling pressure relief can reduce the impact propensity of the coal seam,but it also reduces the integrity and strength of the coal mass at the side of the roadway.Therefore,studying the mechanical properties and energy evolution rules of coal samples containing holes and filled structures has certain practical significance for achieving coordinated control of coal mine rockburst disasters and the stability of roadway surrounding rocks.To achieve this aim,seven types of burst-prone coal samples were prepared and subject to uniaxial compression experiments with the aid of a TAW-3000 electro-hydraulic servo testing machine.Besides,the stress–strain curves,acoustic emission signals,DIC strain fields and other data were collected during the experiments.Furthermore,the failure modes and energy evolutions of samples with varying drilled hole sizes and filling materials were analyzed.The results show that the indexes related to burst propensity of the drilled coal samples decline to some extent compared with those of the intact one,and the decline is positively corelated to the diameter of the drilled hole.After hole filling,the strain concentration degree around the drilled hole is lowered to a certain degree,and polyurethane filling has a more remarkable effect than cement filling.Meanwhile,hole filling can enhance the strength and deformation resistance of coal.Hole drilling can accelerate the release of accumulated elastic strain energy,turning the acoustic emission events from low-frequency and high-energy ones to high-frequency and low-energy ones,whereas hole filling can reduce the intensity of energy release.The experimental results and theoretical derivation demonstrate that hole filling promotes coal deformability and strength mainly by weakening stress concentration surrounding the drilled holes.Moreover,the fillings can achieve a better filling effect if their elastic modulus and Poisson’s ratio are closer to those of the coal body.展开更多
Isothermal forging stands as an effective technology for the production of large-scale titanium alloy multi-rib components.However,challenges have persisted,including die underfilling and strain concentration due to t...Isothermal forging stands as an effective technology for the production of large-scale titanium alloy multi-rib components.However,challenges have persisted,including die underfilling and strain concentration due to the complex material flow and heterogeneous deformation within the forging die cavity.While approaches centered on optimized billet designs have mitigated these challenges,uncertainties in process parameters continue to introduce unacceptable variations in forming accuracy and stability.To tackle this issue,this study introduced a multi-objective robust optimization approach for billet design,accounting for the multi-rib eigenstructure and potential uncertainties.The approach includes finite element(FE)modeling for analyzing the die-filling and strain inhomogeneity within the multi-rib eigenstructure.Furthermore,it integrated image acquisition perception and feed back technologies(IAPF)for real-time monitoring of material flow and filling sequences within die rib-grooves,validating the accuracy of the FE modeling.By incorporating dimensional parameters of the billet and uncertainty factors,including friction,draft angle,forming temperature,speed,and deviations in billet and die,quantitative analyses on the rib-groove filling and strain inhomogeneity with fluctuation were conducted.Subsequently,a dual-response surface model was developed for statistical analysis of the cavity filling and strain homogeneity.Finally,the robust optimization was processed using a non-dominated sorting genetic algorithm II(NSGA-II)and validated using the IAPF technologies.The proposed approach enables robust design enhancements for rib-groove filling and strain homogeneity in titanium alloy multi-rib components.展开更多
A high-efficiency mode of high-low seedbed cultivation(HLSC)has been listed as the main agricultural technology to increase land utilization ratio and grain yield in Shandong Province,China.However,limited information...A high-efficiency mode of high-low seedbed cultivation(HLSC)has been listed as the main agricultural technology to increase land utilization ratio and grain yield in Shandong Province,China.However,limited information is available on the optimized water and nitrogen management for yield formation,especially the grain-filling process,under HLSC mode.A three-year field experiment with four nitrogen rates and three irrigation rates of HLSC was conducted to reveal the response of grain-filling parameters,grain weight percentage of spike weight(GPS),spike moisture content(SMC),and winter wheat yield to water and nitrogen rates.The four nitrogen rates were N1(360 kg ha^(-1) pure N),N2(300 kg ha^(-1) pure N),N3(240 kg ha^(-1) pure N),and N4(180 kg ha^(-1) pure N),respectively,and the three irrigation quotas were W1(120 mm),W2(90 mm),and W3(60 mm),respectively.Results showed that the determinate growth function generally performed well in simulating the temporal dynamics of grain weight(0.989<R^(2)<0.999,where R2 is the determination coefficient).The occurrence time of maximum filling rate(T_(max))and active grain-filling period(AGP)increased with the increase in the water or nitrogen rate,whereas the average grain-filling rate(G_(mean))had a decreasing trend.The final 1,000-grain weight(FTGW)increased and then decreased with the increase in the nitrogen rates and increased with the increase in the irrigation rates.The GPS and SMC had a highly significant quadratic polynomial relationship with grain weight and days after anthesis.Nitrogen,irrigation,and year significantly affected the T_(max),AGP,G_(mean),and FTGW.Particularly,the AGP and FTGW were insignificantly different between high seedbed(HLSC-H)and low seedbed(HLSC-L)across the water and nitrogen levels.Moreover,the moderate water and nitrogen supply was more beneficial for grain yield,as well as for spike number and grain number per hectare.The principal component analysis indicated that combining 240-300 kg N ha^(-1) and 90^(-1)20 mm irrigation quota could improve grain-filling efficiency and yield for the HLSC-cultivated winter wheat.展开更多
In a study comparing grain filling and yield in a large-and a small-grain-size wheat cultivar under two planting patterns and two irrigation regimes,plastic-covered ridge and furrow planting with sprinkler irrigation ...In a study comparing grain filling and yield in a large-and a small-grain-size wheat cultivar under two planting patterns and two irrigation regimes,plastic-covered ridge and furrow planting with sprinkler irrigation increased grain filling and yield in both cultivars.The largest contributors to grain yield were an extended active grain-filling period in Shuangda 1 and an increased mean grain-filling rate in XN538.展开更多
Traditional research believes that the filling body can effectively control stress concentration while ignoring the problems of unknown stability and the complex and changeable stress distribution of the filling body...Traditional research believes that the filling body can effectively control stress concentration while ignoring the problems of unknown stability and the complex and changeable stress distribution of the filling body–surrounding rock combination under high-stress conditions.Current monitoring data processing methods cannot fully consider the complexity of monitoring objects,the diversity of monitoring methods,and the dynamics of monitoring data.To solve this problem,this paper proposes a phase space reconstruction and stability prediction method to process heterogeneous information of backfill–surrounding rock combinations.The three-dimensional monitoring system of a large-area filling body–surrounding rock combination in Longshou Mine was constructed by using drilling stress,multipoint displacement meter,and inclinometer.Varied information,such as the stress and displacement of the filling body–surrounding rock combination,was continuously obtained.Combined with the average mutual information method and the false nearest neighbor point method,the phase space of the heterogeneous information of the filling body–surrounding rock combination was then constructed.In this paper,the distance between the phase point and its nearest point was used as the index evaluation distance to evaluate the stability of the filling body–surrounding rock combination.The evaluated distances(ED)revealed a high sensitivity to the stability of the filling body–surrounding rock combination.The new method was then applied to calculate the time series of historically ED for 12 measuring points located at Longshou Mine.The moments of mutation in these time series were at least 3 months ahead of the roadway return dates.In the ED prediction experiments,the autoregressive integrated moving average model showed a higher prediction accuracy than the deep learning models(long short-term memory and Transformer).Furthermore,the root-mean-square error distribution of the prediction results peaked at 0.26,thus outperforming the no-prediction method in 70%of the cases.展开更多
Introduction: Synovial cyst of the tibial tunnel in connection with anterior cruciate ligament (ACL) reconstruction is a rare but particularly troublesome complication. Medical treatment is often doomed to failure, an...Introduction: Synovial cyst of the tibial tunnel in connection with anterior cruciate ligament (ACL) reconstruction is a rare but particularly troublesome complication. Medical treatment is often doomed to failure, and surgical treatment usually consists of excising the cyst and filling the tunnel with bone. The aim of this study was to evaluate the results of filling the tunnel with acrylic cement. Hypothesis: Filling the tibial bone tunnel with acrylic cement should eliminate communication between the joint cavity and the pre-tibial surface and prevent cyst recurrence. Patients and Methods: This retrospective series is composed of 13 patients, 9 men and 4 women, mean age 48.5 years (31 to 64) operated on between 2011 and 2019 for an intra- and extraosseous synovial cyst consecutive to the tibial tunnel of an ACL graft. Between 1983 and 2016, 12 of the patients had had a bone graft without bone block fixation (DI-DT or Mac Intosh) and one patient, a bone-bone transplant (KJ). The cyst was of variable size, located on the anteromedial aspect of the proximal end of the tibia, and often painful, warranting consultation. At the time of the initial operation, 9 patients had undergone meniscectomies (6 medial, 2 lateral, 1 double). In 7 knees, there were 7 cartilage lesions in the femorotibial and/or patellofemoral compartments (one stage 1 lesion, 2 stage 2 lesions, 4 stage 3 lesions, and no stage 4 lesions). Only 2 knees had neither cartilage nor meniscus lesions. After curettage of the bone tunnel /− removal of the non-resorbed or PEEK interference screw, the tunnel was filled with acrylic cement /− reinforced with a ligament staple to prevent expulsion. All patients underwent regular follow-up consultations until recovery. Results: At a maximum follow-up of 8 years, only 1 cyst recurred, representing a 7.69% failure rate. It was reoperated with another technique, which involved filling the tibial bone tunnel with bone graft taken from a half-bank head. After recovery, the cyst healed definitively. All patients were able to return to their previous activity within 15 days of surgery. Conclusion: Filling the tibial tunnel with acrylic cement reinforced /− with a ligament staple is a reliable and rapid solution for the treatment of intra- and extra-articular synovial cysts in relation to the tibial tunnel of ACL grafts.展开更多
Objective:To analyze the effectiveness of modified non-traumatic filling technology in the treatment of pediatric dental caries.Methods:Ninety-seven children with dental caries who were treated in our hospital(Panyu M...Objective:To analyze the effectiveness of modified non-traumatic filling technology in the treatment of pediatric dental caries.Methods:Ninety-seven children with dental caries who were treated in our hospital(Panyu Maternal and Child Care Service Center of Guangzhou)from January 2022 to December 2023 were selected and randomly divided into two groups,with 48 cases in the experimental group and 49 in the control group.The experimental group was treated with modified non-traumatic filling techniques,while the control group was treated with conventional filling techniques.Observation indicators such as the total effectiveness of the treatment,incidence of adverse events,treatment compliance,and pain scores were analyzed after the intervention.Result:After intervention,the total effectiveness of the treatment in the experimental group was higher than that in the control group(P<0.05).The incidence of adverse events in the experimental group was lower than that of the control group(P<0.05).The treatment compliance of patients in the experimental group was higher than that in the control group(P<0.05).The pain score of the experimental group was lower than that of the control group(P<0.05).Conclusion:The application of modified non-traumatic filling technology in the treatment of pediatric dental caries showed good therapeutic outcomes.After the intervention,the child’s symptoms were significantly alleviated,the incidence of adverse events such as filling material falling off was reduced,their compliance was improved,and the pain was relieved.This procedure is worth to be promoted for clinical application.展开更多
The implementation of high pressure die casting (HPDC) filling process modeling based on smoothed particle hydrodynamics (SPH) was discussed. A new treatment of inlet boundary was established by discriminating flu...The implementation of high pressure die casting (HPDC) filling process modeling based on smoothed particle hydrodynamics (SPH) was discussed. A new treatment of inlet boundary was established by discriminating fluid particles from inlet particles. The roles of artificial viscosity and moving least squares method in the present model were compared in the handling pressure oscillation. The final model was substantiated by simulating filling process in HPDC in both two and three dimensions. The simulated results from SPH and finite difference method (FDM) were compared with the experiments. The results show the former is in a better agreement with experiments. It demonstrates the efficiency and precision of this SPH model in describing flow pattern in filling process.展开更多
A numerical model of foundry filling process was established based on the smoothed particle hydrodynamics(SPH)method.To mimic the constraints that the solid mold prescribes on the filling fluid,a composite treatment...A numerical model of foundry filling process was established based on the smoothed particle hydrodynamics(SPH)method.To mimic the constraints that the solid mold prescribes on the filling fluid,a composite treatment to the solid boundaries is elaborately designed.On solid boundary surfaces,boundary particles were set,which exert Lennard-Jones force on approaching fluid particles;inside the solid mold,ghost particles were arranged to complete the compact domain of near-boundary fluid particles.Water analog experiments were conducted in parallel with the model simulations.Very good agreement between experimental and simulation results demonstrates the success of model development.展开更多
[Objective] The aim was to research effects of N quantity on grain-filling characters of two-line hybrid rice cultivars with large ears. [Method] Peiza 67 and 88, two-line hybridized rice with large ears, were made us...[Objective] The aim was to research effects of N quantity on grain-filling characters of two-line hybrid rice cultivars with large ears. [Method] Peiza 67 and 88, two-line hybridized rice with large ears, were made use of to study on effects of N fertilizer in different quantities (LN: 90 kg/hm2;MN: 180 kg/hm2;HN: 270 kg/hm2) on plumpness and grain-filling characters. [Result] When N fertilizers were excessive, for inferior grains, grain-filling rate decreased and grain-filling time extended, resulting in plumpness decline after degradation of leaves' function. When N fertilizers were inadequate, maximal and average grain-filling rates decreased and the differences between superior and inferior grains in grain-filling rate increased, leading to decline of grain's weight and plumpness degree. On the other hand, quantity of N fertilizers had little effect on superior grains in plumpness. [Conclusion] The research provided references for reasonable use of N fertilizer and improvement of rice yield and N use.展开更多
A new program is developed for gas-liquid two-phase mold filling simulation in casting. The gas fluid, the superheated liquid metal and the liquid metal containing solid grains are assumed to be governed by Navier-Sto...A new program is developed for gas-liquid two-phase mold filling simulation in casting. The gas fluid, the superheated liquid metal and the liquid metal containing solid grains are assumed to be governed by Navier-Stokes equations and solved through Projection method. The Level set method is used to track the gas-liquid interface boundary. In order to demonstrate the correctness of this new program for simulation of gas-liquid two-phase mold filling in casting, a benchmark filling experiment is simulated (this benchmark test is designed by XU and the filling process is recorded by a 16-mm film camera). The simulated results agree very well with the experimental results, showing that this new program can be used to properly predicate the gas-liquid two-phase mold filling simulation in casting.展开更多
Greetings esteemed readers,As we embark on a new year filled with promise and innovation,it is my pleasure to reflect on the remarkable achievements and advancements in the journal Neural Regeneration Research(NRR)sho...Greetings esteemed readers,As we embark on a new year filled with promise and innovation,it is my pleasure to reflect on the remarkable achievements and advancements in the journal Neural Regeneration Research(NRR)showcased throughout 2024.Firstly,the 2024 International Neural Regeneration Symposium(INRS2024)and the 15^(th) Asia Pacific Symposium on Neural Regeneration(APSNR),held from April 12^(th) to 14^(th) in Guangzhou,China,stand as shining examples of collaboration,knowledge exchange,and scientific excellence.展开更多
High-temperature stress (HTS) at the grain-filling stage in spring maize (Zea mays L.) is the main obstacle to increasing productivity in the North China Plain (NCP). To solve this problem, the physiological mec...High-temperature stress (HTS) at the grain-filling stage in spring maize (Zea mays L.) is the main obstacle to increasing productivity in the North China Plain (NCP). To solve this problem, the physiological mechanisms of HTS, and its causes and impacts, must be understood. The HTS threshold of the duration and rate in grain filling, photosynthetic characteristics (e.g., the thermal stability of thylakoid membrane, chlorophyll and electron transfer, photosynthetic carbon assimilation), water status (e.g., leaf water potential, turgor and leaf relative water content) and signal transduction in maize are reviewed. The HTS threshold for spring maize is highly desirable to be appraised to prevent damages by unfavorable temperatures during grain filling in this region. HTS has negative impacts on maize photosynthesis by damaging the stability of the thylakoid membrane structure and degrading chlorophyll, which reduces light energy absorption, transfer and photosynthetic carbon assimilation. In addition, photosynthesis can be deleteriously affected due to inhibited root growth under HTS in which plants decrease their water-absorbing capacity, leaf water potential, turgor, leaf relative water content, and stomatal conductance. Inhibited photosynthesis decrease the supply of photosynthates to the grain, leading to falling of kernel weight and even grain yield. However, maize does not respond passively to HTS. The plant transduces the abscisic acid (ABA) signal to express heat shock proteins (HSPs), which are molecular chaperones that participate in protein refolding and degradation caused by HTS. HSPs stabilize target protein configurations and indirectly improve thylakoid membrane structure stability, light energy absorption and passing, electron transport, and fixed carbon assimilation, leading to improved photosynthesis. ABA also induces stomatal closure to maintain a good water status for photosynthesis. Based on understanding of such mechanisms, strategies for alleviating HTS at the grain-filling stage in spring maize are summarized. Eight strategies have the potential to improve the ability of spring maize to avoid or tolerate HTS in this study, e.g., adjusting sowing date to avoid HTS, breeding heat-tolerance varieties, and tillage methods, optimizing irrigation, heat acclimation, regulating chemicals, nutritional management, and planting geometric design to tolerate HTS. Based on the single technology breakthrough, a com- prehensive integrated technical system is needed to improve heat tolerance and increase the spring maize yield in the NCP.展开更多
The effects of lodging of rice plants from 20 d after full heading to maturity on yield and grain quality were investigated with a hybrid rice combination Liangyoupeijiu and a japonica rice cultivar CY-6. The results ...The effects of lodging of rice plants from 20 d after full heading to maturity on yield and grain quality were investigated with a hybrid rice combination Liangyoupeijiu and a japonica rice cultivar CY-6. The results showed that, except for brown rice rate, almost all parameters for yield and grain quality including ratio of grain length to grain width, gelatinization temperature and gel consistency, were significantly influenced by lodging and thus deteriorated. Regression analysis suggested that, lodging one day earlier at the grain-filling stage could cause 2.66% to 2.71% of yield loss, 1.8 to 2.6 percentage points decrease of seed-setting rate, 0.26 to 0.32 g reduction of lO00-grain weight, 0.097 to 0. 155 percentage point decline of milled rice rate, as well as 0.13 to 0.27 percentage point increase of chalky grain rate, and 0.021 to 0.024 percentage point rise of protein content, and subsequently lower the eating quality.展开更多
Now,lodging is a major constraint factor contributing to yield loss of maize (Zea mays L.) under high planting density.Chemical regulation and nitrogen fertilizer could effectively coordinate the relationship between ...Now,lodging is a major constraint factor contributing to yield loss of maize (Zea mays L.) under high planting density.Chemical regulation and nitrogen fertilizer could effectively coordinate the relationship between stem lodging and maize yield,which significantly reduce lodging and improve the grain yield.The purpose of this study was to explore the effects of chemical regulation and different nitrogen application rates on lodging characteristics,grain filling and yield of maize under high density.For this,we established a field study during 2017 and 2018 growing seasons,with three nitrogen levels of N100 (100 kg ha^(–1)),N200 (200 kg ha^(–1)) and N300 (300 kg ha^(–1)) at high planting density (90 000 plants ha^(–1)),and applied plant growth regulator (Yuhuangjin,the mixture of 3% DTA-6 and 27% ethephon) at the 7th leaf.The results showed that chemical control increased the activities of phenylalanine ammonia-lyase (PAL),tyrosine ammonia-lyase (TAL),4-coumarate:Co A ligase (4CL),and cinnamyl alcohol dehydrogenase (CAD),and increased the lignin,cellulose and hemicellulose contents at the bottom of the 3rd internode,which significantly reduced the lodging percentage.The lignin-related enzyme activities,lignin,cellulose and hemicellulose contents decreased with the increase of nitrogen fertilizer,which significantly increased the lodging percentage.The 200 kg ha^(–1) nitrogen application and chemical control increased the number,diameter,angle,volume,and dry weight of brace roots.The 200 kg ha^(–1) nitrogen application and chemical control significantly increased the activities of ADP-glucose pyrophosphorylase (AGPase),soluble starch synthase (SSS) and starch branching enzyme(SBE),which promoted the starch accumulation in grains.Additional,improved the maximum grain filling rate (V_(max)) and mean grain filling rate (V_(m)),which promoted the grain filling process,significantly increased grain weight and grain number per ear,thus increased the final yield.展开更多
With 10 rice cultivars (lines) as materials, the changes in activities of adenosine diphosphoglucose pyrophosphorylase(ADPGPase), starch synthase (SSase) and starch branching enzyme (Q-enzyme) in the grains during gra...With 10 rice cultivars (lines) as materials, the changes in activities of adenosine diphosphoglucose pyrophosphorylase(ADPGPase), starch synthase (SSase) and starch branching enzyme (Q-enzyme) in the grains during grain filling, and theirrelationships with the filling rate, gel consistency (GC), alkali spreading value (ASV) and amylose content (AC) werestudied. The results showed that changes in activities of ADPGPase, SSase and Q-enzyme exhibited a single peak duringgrain filling, and the time of the activity peaks for the former two enzymes was earlier than that of the maximum grain-fillingrate (Tmax), and the time reaching the peak for Q-enzyme was synchronous with Tmax. The activities at early grain fillingstage, and the mean and maximum activities of each enzyme during grain filling period were positively and significantly orvery significantly correlated with the mean and maximum grain filling rate and starch content (mg grain-1) in the grains.Activities of ADPGPase at all grain filling stages and those of Q-enzyme at the early and mid filling stages were notsignificantly correlated the cooking quality (GC, ASV and AC). SSase activities at the early filling stage were significantlyand negatively correlated with GC and ASV, and positively correlated with AC. Activities of SSase at mid and late grainfilling stages and Q-enzyme at the late filling stage were significantly and positively correlated with GC and ASV, andnegatively correlated with AC. Spraying zeatin or abscisic acid at early grain filling stage could obviously regulate theactivities of ADPGPase, SSase and Q-enzyme in the grains.展开更多
The changes in activities of key enzymes involved in sucrose-to-starch conversion and concentrations of hormones in superior and inferior spikelets of super rice were investigated and their association with grain fill...The changes in activities of key enzymes involved in sucrose-to-starch conversion and concentrations of hormones in superior and inferior spikelets of super rice were investigated and their association with grain filling was analyzed.Four super rice cultivars,Liangyoupeijiu,IIyou 084,Huaidao 9 and Wujing 15,and two high-yielding and elite check cultivars,Shanyou 63 and Yangfujing 8,were used.The activities of sucrose synthase (SuSase),adenosine diphosphoglucose pyrophosphorylase (AGPase),starch synthase (StSase) and starch branching enzyme (SBE),and the concentrations of zeatin + zeatin riboside (Z + ZR),indole-3-acetic acid (IAA) and abscisic acid (ABA) in superior and inferior spikelets were determined during the grain filling period and their relationships with grain filling rate were analyzed.Maximum grain filling rate,the time reaching the maximum grain-filling rate,mean grain filling rate and brown rice weight for superior spikelets showed a slight difference between the super and check rice cultivars,but were significantly lower in the super rice than in the check rice for inferior spikelets.Changes of enzyme activities and hormone concentrations in grains exhibited single peak curves during the grain filling period.The peak values and the mean activities of SuSase,AGPase,StSase and SBE were lower in inferior spikelets than in superior ones,as well as the peak values and the mean concentrations of Z + ZR and IAA.However,the peak value and the mean concentration of ABA were significantly higher in inferior spikelets than in superior ones and greater in the super rice than in the check rice.The grain filling rate was positively and significantly correlated with the activities of SuSase,AGPase and StSase and the concentrations of Z + ZR and IAA.The results suggested that the low activities of SuSase,AGPase and StSase and the low concentrations of Z + ZR and IAA might be important physiological reasons for the slow grain filling rate and light grain weight of inferior spikelets in super rice.展开更多
Excessive use of nitrogen fertilizer and high planting density reduce grain weight in wheat.However,the effects of high nitrogen and planting density on the filling of grain located in different positions of the wheat...Excessive use of nitrogen fertilizer and high planting density reduce grain weight in wheat.However,the effects of high nitrogen and planting density on the filling of grain located in different positions of the wheat spikelet are unknown.A two-year field experiment was conducted to investigate this question and the underlying mechanisms with respect to hormone and carbohydrate activity.Both high nitrogen application and planting density significantly increased spike density,while reducing kernel number per spike and 1000-kernel weight.However,the effects of high nitrogen and high plant density on kernel number per spike and 1000-kernel weight were different.The inhibitory effect of high nitrogen application and high planting density on kernel number per spike was achieved mainly by a reduction in kernel number per spikelet in the top and bottom spikelets.However,the decrease in 1000-kernel weight was contributed mainly by the reduced weight of grain in the middle spikelets.The grain-filling rate of inferior grain in the middle spikelets was significantly decreased under high nitrogen input and high planting density conditions,particularly during the early and middle grain-filling periods,leading to the suppression of grain filling and consequent decrease in grain weight.This effect resulted mainly from inhibited sucrose transport to and starch accumulation in inferior grain in the middle spikelets via reduction of the abscisic acid/ethylene ratio.This mechanism may explain how high nitrogen application and high planting density inhibit the grain filling of inferior wheat grain.展开更多
基金partially supported by the National Natural Science Foundation of China(11671359)the Provincial Natural Science Foundation of Zhejiang(LY15A010017,LY16A010009)the Science Foundation of Zhejiang Sci-Tech University 15062173-Y
文摘In this paper, we study the propagation of the pattern for a reaction-diffusionchemotaxis model. By using a weakly nonlinear analysis with multiple temporal and spatial scales, we establish the amplitude equations for the patterns, which show that a local perturbation at the constant steady state is spread over the whole domain in the form of a traveling wavefront. The simulations demonstrate that the amplitude equations capture the evolution of the exact patterns obtained by numerically solving the considered system.
基金National Natural Science Foundation of China(Grant Nos.52174080 and 51974160)Science Foundation of Tiandi Technology Co.,Ltd.(2022-2-TD-ZD016).
文摘During the mining process of impact-prone coal seams,drilling pressure relief can reduce the impact propensity of the coal seam,but it also reduces the integrity and strength of the coal mass at the side of the roadway.Therefore,studying the mechanical properties and energy evolution rules of coal samples containing holes and filled structures has certain practical significance for achieving coordinated control of coal mine rockburst disasters and the stability of roadway surrounding rocks.To achieve this aim,seven types of burst-prone coal samples were prepared and subject to uniaxial compression experiments with the aid of a TAW-3000 electro-hydraulic servo testing machine.Besides,the stress–strain curves,acoustic emission signals,DIC strain fields and other data were collected during the experiments.Furthermore,the failure modes and energy evolutions of samples with varying drilled hole sizes and filling materials were analyzed.The results show that the indexes related to burst propensity of the drilled coal samples decline to some extent compared with those of the intact one,and the decline is positively corelated to the diameter of the drilled hole.After hole filling,the strain concentration degree around the drilled hole is lowered to a certain degree,and polyurethane filling has a more remarkable effect than cement filling.Meanwhile,hole filling can enhance the strength and deformation resistance of coal.Hole drilling can accelerate the release of accumulated elastic strain energy,turning the acoustic emission events from low-frequency and high-energy ones to high-frequency and low-energy ones,whereas hole filling can reduce the intensity of energy release.The experimental results and theoretical derivation demonstrate that hole filling promotes coal deformability and strength mainly by weakening stress concentration surrounding the drilled holes.Moreover,the fillings can achieve a better filling effect if their elastic modulus and Poisson’s ratio are closer to those of the coal body.
基金Supported by National Natural Science Foundation of China(Grant No.52005241)Jiangxi Provincial Natural Science Foundation(Grant Nos.20232BAB204050,20224BAB204045)China Scholarship Council(Grant No.202208360107).
文摘Isothermal forging stands as an effective technology for the production of large-scale titanium alloy multi-rib components.However,challenges have persisted,including die underfilling and strain concentration due to the complex material flow and heterogeneous deformation within the forging die cavity.While approaches centered on optimized billet designs have mitigated these challenges,uncertainties in process parameters continue to introduce unacceptable variations in forming accuracy and stability.To tackle this issue,this study introduced a multi-objective robust optimization approach for billet design,accounting for the multi-rib eigenstructure and potential uncertainties.The approach includes finite element(FE)modeling for analyzing the die-filling and strain inhomogeneity within the multi-rib eigenstructure.Furthermore,it integrated image acquisition perception and feed back technologies(IAPF)for real-time monitoring of material flow and filling sequences within die rib-grooves,validating the accuracy of the FE modeling.By incorporating dimensional parameters of the billet and uncertainty factors,including friction,draft angle,forming temperature,speed,and deviations in billet and die,quantitative analyses on the rib-groove filling and strain inhomogeneity with fluctuation were conducted.Subsequently,a dual-response surface model was developed for statistical analysis of the cavity filling and strain homogeneity.Finally,the robust optimization was processed using a non-dominated sorting genetic algorithm II(NSGA-II)and validated using the IAPF technologies.The proposed approach enables robust design enhancements for rib-groove filling and strain homogeneity in titanium alloy multi-rib components.
基金supported by the National Key Research and Development Program of China(2023YFD1900802)the China Agriculture Research System of MOF and MARA(CARS-03-19)+2 种基金the National Natural Science Foundation of China(51879267)the Central Public-interest Scientific Institution Basal Research Fund,China(IFI2023-13)the Agricultural Science and Technology Innovation Program(ASTIP),Chinese Academy of Agricultural Sciences。
文摘A high-efficiency mode of high-low seedbed cultivation(HLSC)has been listed as the main agricultural technology to increase land utilization ratio and grain yield in Shandong Province,China.However,limited information is available on the optimized water and nitrogen management for yield formation,especially the grain-filling process,under HLSC mode.A three-year field experiment with four nitrogen rates and three irrigation rates of HLSC was conducted to reveal the response of grain-filling parameters,grain weight percentage of spike weight(GPS),spike moisture content(SMC),and winter wheat yield to water and nitrogen rates.The four nitrogen rates were N1(360 kg ha^(-1) pure N),N2(300 kg ha^(-1) pure N),N3(240 kg ha^(-1) pure N),and N4(180 kg ha^(-1) pure N),respectively,and the three irrigation quotas were W1(120 mm),W2(90 mm),and W3(60 mm),respectively.Results showed that the determinate growth function generally performed well in simulating the temporal dynamics of grain weight(0.989<R^(2)<0.999,where R2 is the determination coefficient).The occurrence time of maximum filling rate(T_(max))and active grain-filling period(AGP)increased with the increase in the water or nitrogen rate,whereas the average grain-filling rate(G_(mean))had a decreasing trend.The final 1,000-grain weight(FTGW)increased and then decreased with the increase in the nitrogen rates and increased with the increase in the irrigation rates.The GPS and SMC had a highly significant quadratic polynomial relationship with grain weight and days after anthesis.Nitrogen,irrigation,and year significantly affected the T_(max),AGP,G_(mean),and FTGW.Particularly,the AGP and FTGW were insignificantly different between high seedbed(HLSC-H)and low seedbed(HLSC-L)across the water and nitrogen levels.Moreover,the moderate water and nitrogen supply was more beneficial for grain yield,as well as for spike number and grain number per hectare.The principal component analysis indicated that combining 240-300 kg N ha^(-1) and 90^(-1)20 mm irrigation quota could improve grain-filling efficiency and yield for the HLSC-cultivated winter wheat.
基金supported by the National Key Research and Development Program of China(2017YFD0300202-2)the National Natural Science Foundation of China(31871567)the Young Scholar of Tang(2017)。
文摘In a study comparing grain filling and yield in a large-and a small-grain-size wheat cultivar under two planting patterns and two irrigation regimes,plastic-covered ridge and furrow planting with sprinkler irrigation increased grain filling and yield in both cultivars.The largest contributors to grain yield were an extended active grain-filling period in Shuangda 1 and an increased mean grain-filling rate in XN538.
基金the National Key R&D Program of China(No.2022YFC2904103)the Key Program of the National Natural Science Foundation of China(No.52034001)+1 种基金the 111 Project(No.B20041)the China National Postdoctoral Program for Innovative Talents(No.BX20230041)。
文摘Traditional research believes that the filling body can effectively control stress concentration while ignoring the problems of unknown stability and the complex and changeable stress distribution of the filling body–surrounding rock combination under high-stress conditions.Current monitoring data processing methods cannot fully consider the complexity of monitoring objects,the diversity of monitoring methods,and the dynamics of monitoring data.To solve this problem,this paper proposes a phase space reconstruction and stability prediction method to process heterogeneous information of backfill–surrounding rock combinations.The three-dimensional monitoring system of a large-area filling body–surrounding rock combination in Longshou Mine was constructed by using drilling stress,multipoint displacement meter,and inclinometer.Varied information,such as the stress and displacement of the filling body–surrounding rock combination,was continuously obtained.Combined with the average mutual information method and the false nearest neighbor point method,the phase space of the heterogeneous information of the filling body–surrounding rock combination was then constructed.In this paper,the distance between the phase point and its nearest point was used as the index evaluation distance to evaluate the stability of the filling body–surrounding rock combination.The evaluated distances(ED)revealed a high sensitivity to the stability of the filling body–surrounding rock combination.The new method was then applied to calculate the time series of historically ED for 12 measuring points located at Longshou Mine.The moments of mutation in these time series were at least 3 months ahead of the roadway return dates.In the ED prediction experiments,the autoregressive integrated moving average model showed a higher prediction accuracy than the deep learning models(long short-term memory and Transformer).Furthermore,the root-mean-square error distribution of the prediction results peaked at 0.26,thus outperforming the no-prediction method in 70%of the cases.
文摘Introduction: Synovial cyst of the tibial tunnel in connection with anterior cruciate ligament (ACL) reconstruction is a rare but particularly troublesome complication. Medical treatment is often doomed to failure, and surgical treatment usually consists of excising the cyst and filling the tunnel with bone. The aim of this study was to evaluate the results of filling the tunnel with acrylic cement. Hypothesis: Filling the tibial bone tunnel with acrylic cement should eliminate communication between the joint cavity and the pre-tibial surface and prevent cyst recurrence. Patients and Methods: This retrospective series is composed of 13 patients, 9 men and 4 women, mean age 48.5 years (31 to 64) operated on between 2011 and 2019 for an intra- and extraosseous synovial cyst consecutive to the tibial tunnel of an ACL graft. Between 1983 and 2016, 12 of the patients had had a bone graft without bone block fixation (DI-DT or Mac Intosh) and one patient, a bone-bone transplant (KJ). The cyst was of variable size, located on the anteromedial aspect of the proximal end of the tibia, and often painful, warranting consultation. At the time of the initial operation, 9 patients had undergone meniscectomies (6 medial, 2 lateral, 1 double). In 7 knees, there were 7 cartilage lesions in the femorotibial and/or patellofemoral compartments (one stage 1 lesion, 2 stage 2 lesions, 4 stage 3 lesions, and no stage 4 lesions). Only 2 knees had neither cartilage nor meniscus lesions. After curettage of the bone tunnel /− removal of the non-resorbed or PEEK interference screw, the tunnel was filled with acrylic cement /− reinforced with a ligament staple to prevent expulsion. All patients underwent regular follow-up consultations until recovery. Results: At a maximum follow-up of 8 years, only 1 cyst recurred, representing a 7.69% failure rate. It was reoperated with another technique, which involved filling the tibial bone tunnel with bone graft taken from a half-bank head. After recovery, the cyst healed definitively. All patients were able to return to their previous activity within 15 days of surgery. Conclusion: Filling the tibial tunnel with acrylic cement reinforced /− with a ligament staple is a reliable and rapid solution for the treatment of intra- and extra-articular synovial cysts in relation to the tibial tunnel of ACL grafts.
文摘Objective:To analyze the effectiveness of modified non-traumatic filling technology in the treatment of pediatric dental caries.Methods:Ninety-seven children with dental caries who were treated in our hospital(Panyu Maternal and Child Care Service Center of Guangzhou)from January 2022 to December 2023 were selected and randomly divided into two groups,with 48 cases in the experimental group and 49 in the control group.The experimental group was treated with modified non-traumatic filling techniques,while the control group was treated with conventional filling techniques.Observation indicators such as the total effectiveness of the treatment,incidence of adverse events,treatment compliance,and pain scores were analyzed after the intervention.Result:After intervention,the total effectiveness of the treatment in the experimental group was higher than that in the control group(P<0.05).The incidence of adverse events in the experimental group was lower than that of the control group(P<0.05).The treatment compliance of patients in the experimental group was higher than that in the control group(P<0.05).The pain score of the experimental group was lower than that of the control group(P<0.05).Conclusion:The application of modified non-traumatic filling technology in the treatment of pediatric dental caries showed good therapeutic outcomes.After the intervention,the child’s symptoms were significantly alleviated,the incidence of adverse events such as filling material falling off was reduced,their compliance was improved,and the pain was relieved.This procedure is worth to be promoted for clinical application.
基金Project (2009Z001) supported by the Important Item in Guangdong-Hong Kong Key Project, ChinaProject (2010B090400297) supported by the Cooperation Project in Industry, Education and Research of Guangdong Province and Ministry of Education of China
文摘The implementation of high pressure die casting (HPDC) filling process modeling based on smoothed particle hydrodynamics (SPH) was discussed. A new treatment of inlet boundary was established by discriminating fluid particles from inlet particles. The roles of artificial viscosity and moving least squares method in the present model were compared in the handling pressure oscillation. The final model was substantiated by simulating filling process in HPDC in both two and three dimensions. The simulated results from SPH and finite difference method (FDM) were compared with the experiments. The results show the former is in a better agreement with experiments. It demonstrates the efficiency and precision of this SPH model in describing flow pattern in filling process.
基金Project(2011006B)supported by the Open Project of National Engineering Research Center of Near-Shape Forming for Metallic Materials,ChinaProject(FJ)supported by the CAS"100 talents"Plan
文摘A numerical model of foundry filling process was established based on the smoothed particle hydrodynamics(SPH)method.To mimic the constraints that the solid mold prescribes on the filling fluid,a composite treatment to the solid boundaries is elaborately designed.On solid boundary surfaces,boundary particles were set,which exert Lennard-Jones force on approaching fluid particles;inside the solid mold,ghost particles were arranged to complete the compact domain of near-boundary fluid particles.Water analog experiments were conducted in parallel with the model simulations.Very good agreement between experimental and simulation results demonstrates the success of model development.
基金Supported by Special Scientific Research Fund of Agricultural Public Welfare Profession(200903008-09)~~
文摘[Objective] The aim was to research effects of N quantity on grain-filling characters of two-line hybrid rice cultivars with large ears. [Method] Peiza 67 and 88, two-line hybridized rice with large ears, were made use of to study on effects of N fertilizer in different quantities (LN: 90 kg/hm2;MN: 180 kg/hm2;HN: 270 kg/hm2) on plumpness and grain-filling characters. [Result] When N fertilizers were excessive, for inferior grains, grain-filling rate decreased and grain-filling time extended, resulting in plumpness decline after degradation of leaves' function. When N fertilizers were inadequate, maximal and average grain-filling rates decreased and the differences between superior and inferior grains in grain-filling rate increased, leading to decline of grain's weight and plumpness degree. On the other hand, quantity of N fertilizers had little effect on superior grains in plumpness. [Conclusion] The research provided references for reasonable use of N fertilizer and improvement of rice yield and N use.
基金Projects(51304145,51301118,51304152)supported by the National Natural Science Foundation of ChinaProject(2013JQ7016)supported by the Natural Science Foundation of Shannxi Province,China+1 种基金Project(2013T002)supported by the Science Foundation of Taiyuan University of Technology,ChinaProject(2013JK0904)supported by Shannxi Provincial Education Department,China
文摘A new program is developed for gas-liquid two-phase mold filling simulation in casting. The gas fluid, the superheated liquid metal and the liquid metal containing solid grains are assumed to be governed by Navier-Stokes equations and solved through Projection method. The Level set method is used to track the gas-liquid interface boundary. In order to demonstrate the correctness of this new program for simulation of gas-liquid two-phase mold filling in casting, a benchmark filling experiment is simulated (this benchmark test is designed by XU and the filling process is recorded by a 16-mm film camera). The simulated results agree very well with the experimental results, showing that this new program can be used to properly predicate the gas-liquid two-phase mold filling simulation in casting.
文摘Greetings esteemed readers,As we embark on a new year filled with promise and innovation,it is my pleasure to reflect on the remarkable achievements and advancements in the journal Neural Regeneration Research(NRR)showcased throughout 2024.Firstly,the 2024 International Neural Regeneration Symposium(INRS2024)and the 15^(th) Asia Pacific Symposium on Neural Regeneration(APSNR),held from April 12^(th) to 14^(th) in Guangzhou,China,stand as shining examples of collaboration,knowledge exchange,and scientific excellence.
基金supported by the National Natural Science Fundation of China (31571601)the Special Scientific Research Fund of Agricultural Public Welfare Profession of China (201503121-11)
文摘High-temperature stress (HTS) at the grain-filling stage in spring maize (Zea mays L.) is the main obstacle to increasing productivity in the North China Plain (NCP). To solve this problem, the physiological mechanisms of HTS, and its causes and impacts, must be understood. The HTS threshold of the duration and rate in grain filling, photosynthetic characteristics (e.g., the thermal stability of thylakoid membrane, chlorophyll and electron transfer, photosynthetic carbon assimilation), water status (e.g., leaf water potential, turgor and leaf relative water content) and signal transduction in maize are reviewed. The HTS threshold for spring maize is highly desirable to be appraised to prevent damages by unfavorable temperatures during grain filling in this region. HTS has negative impacts on maize photosynthesis by damaging the stability of the thylakoid membrane structure and degrading chlorophyll, which reduces light energy absorption, transfer and photosynthetic carbon assimilation. In addition, photosynthesis can be deleteriously affected due to inhibited root growth under HTS in which plants decrease their water-absorbing capacity, leaf water potential, turgor, leaf relative water content, and stomatal conductance. Inhibited photosynthesis decrease the supply of photosynthates to the grain, leading to falling of kernel weight and even grain yield. However, maize does not respond passively to HTS. The plant transduces the abscisic acid (ABA) signal to express heat shock proteins (HSPs), which are molecular chaperones that participate in protein refolding and degradation caused by HTS. HSPs stabilize target protein configurations and indirectly improve thylakoid membrane structure stability, light energy absorption and passing, electron transport, and fixed carbon assimilation, leading to improved photosynthesis. ABA also induces stomatal closure to maintain a good water status for photosynthesis. Based on understanding of such mechanisms, strategies for alleviating HTS at the grain-filling stage in spring maize are summarized. Eight strategies have the potential to improve the ability of spring maize to avoid or tolerate HTS in this study, e.g., adjusting sowing date to avoid HTS, breeding heat-tolerance varieties, and tillage methods, optimizing irrigation, heat acclimation, regulating chemicals, nutritional management, and planting geometric design to tolerate HTS. Based on the single technology breakthrough, a com- prehensive integrated technical system is needed to improve heat tolerance and increase the spring maize yield in the NCP.
基金supported by the Independent Innovation Program of Agricultural Science and Technology in Jiangsu Province,China (Grant No.CX(10)226)
文摘The effects of lodging of rice plants from 20 d after full heading to maturity on yield and grain quality were investigated with a hybrid rice combination Liangyoupeijiu and a japonica rice cultivar CY-6. The results showed that, except for brown rice rate, almost all parameters for yield and grain quality including ratio of grain length to grain width, gelatinization temperature and gel consistency, were significantly influenced by lodging and thus deteriorated. Regression analysis suggested that, lodging one day earlier at the grain-filling stage could cause 2.66% to 2.71% of yield loss, 1.8 to 2.6 percentage points decrease of seed-setting rate, 0.26 to 0.32 g reduction of lO00-grain weight, 0.097 to 0. 155 percentage point decline of milled rice rate, as well as 0.13 to 0.27 percentage point increase of chalky grain rate, and 0.021 to 0.024 percentage point rise of protein content, and subsequently lower the eating quality.
基金supported by the National Key R&D Program of China(2016YFD0300103 and 2017YFD0300506)the Heilongjiang Provincial Funding for National Key R&D Programs of China(GX18B029)the“Academic Backbone”Project of Northeast Agricultural University,China(17XG23)。
文摘Now,lodging is a major constraint factor contributing to yield loss of maize (Zea mays L.) under high planting density.Chemical regulation and nitrogen fertilizer could effectively coordinate the relationship between stem lodging and maize yield,which significantly reduce lodging and improve the grain yield.The purpose of this study was to explore the effects of chemical regulation and different nitrogen application rates on lodging characteristics,grain filling and yield of maize under high density.For this,we established a field study during 2017 and 2018 growing seasons,with three nitrogen levels of N100 (100 kg ha^(–1)),N200 (200 kg ha^(–1)) and N300 (300 kg ha^(–1)) at high planting density (90 000 plants ha^(–1)),and applied plant growth regulator (Yuhuangjin,the mixture of 3% DTA-6 and 27% ethephon) at the 7th leaf.The results showed that chemical control increased the activities of phenylalanine ammonia-lyase (PAL),tyrosine ammonia-lyase (TAL),4-coumarate:Co A ligase (4CL),and cinnamyl alcohol dehydrogenase (CAD),and increased the lignin,cellulose and hemicellulose contents at the bottom of the 3rd internode,which significantly reduced the lodging percentage.The lignin-related enzyme activities,lignin,cellulose and hemicellulose contents decreased with the increase of nitrogen fertilizer,which significantly increased the lodging percentage.The 200 kg ha^(–1) nitrogen application and chemical control increased the number,diameter,angle,volume,and dry weight of brace roots.The 200 kg ha^(–1) nitrogen application and chemical control significantly increased the activities of ADP-glucose pyrophosphorylase (AGPase),soluble starch synthase (SSS) and starch branching enzyme(SBE),which promoted the starch accumulation in grains.Additional,improved the maximum grain filling rate (V_(max)) and mean grain filling rate (V_(m)),which promoted the grain filling process,significantly increased grain weight and grain number per ear,thus increased the final yield.
基金supported by the National Natural Science Foundation of China(30370828)the Natural Science Foundation of Jiangsu Province,China(BK2003041)
文摘With 10 rice cultivars (lines) as materials, the changes in activities of adenosine diphosphoglucose pyrophosphorylase(ADPGPase), starch synthase (SSase) and starch branching enzyme (Q-enzyme) in the grains during grain filling, and theirrelationships with the filling rate, gel consistency (GC), alkali spreading value (ASV) and amylose content (AC) werestudied. The results showed that changes in activities of ADPGPase, SSase and Q-enzyme exhibited a single peak duringgrain filling, and the time of the activity peaks for the former two enzymes was earlier than that of the maximum grain-fillingrate (Tmax), and the time reaching the peak for Q-enzyme was synchronous with Tmax. The activities at early grain fillingstage, and the mean and maximum activities of each enzyme during grain filling period were positively and significantly orvery significantly correlated with the mean and maximum grain filling rate and starch content (mg grain-1) in the grains.Activities of ADPGPase at all grain filling stages and those of Q-enzyme at the early and mid filling stages were notsignificantly correlated the cooking quality (GC, ASV and AC). SSase activities at the early filling stage were significantlyand negatively correlated with GC and ASV, and positively correlated with AC. Activities of SSase at mid and late grainfilling stages and Q-enzyme at the late filling stage were significantly and positively correlated with GC and ASV, andnegatively correlated with AC. Spraying zeatin or abscisic acid at early grain filling stage could obviously regulate theactivities of ADPGPase, SSase and Q-enzyme in the grains.
基金supported by the grants from the National Natural Science Foundation of China(NSFC-IRRI Joint Research Project 31061140457)General Project (Grant Nos. 31071360 and 31271641)+2 种基金the National Basic Research Program (Grant No.2009CB118603)the National Key Technology Support Program of China (Grant Nos. 2011BAD16B14 and 2012BAD04B08)the Basic Scientific Research Special Operation Cost of the Central Research Institutions in 2011 (Grant No. 201103003)
文摘The changes in activities of key enzymes involved in sucrose-to-starch conversion and concentrations of hormones in superior and inferior spikelets of super rice were investigated and their association with grain filling was analyzed.Four super rice cultivars,Liangyoupeijiu,IIyou 084,Huaidao 9 and Wujing 15,and two high-yielding and elite check cultivars,Shanyou 63 and Yangfujing 8,were used.The activities of sucrose synthase (SuSase),adenosine diphosphoglucose pyrophosphorylase (AGPase),starch synthase (StSase) and starch branching enzyme (SBE),and the concentrations of zeatin + zeatin riboside (Z + ZR),indole-3-acetic acid (IAA) and abscisic acid (ABA) in superior and inferior spikelets were determined during the grain filling period and their relationships with grain filling rate were analyzed.Maximum grain filling rate,the time reaching the maximum grain-filling rate,mean grain filling rate and brown rice weight for superior spikelets showed a slight difference between the super and check rice cultivars,but were significantly lower in the super rice than in the check rice for inferior spikelets.Changes of enzyme activities and hormone concentrations in grains exhibited single peak curves during the grain filling period.The peak values and the mean activities of SuSase,AGPase,StSase and SBE were lower in inferior spikelets than in superior ones,as well as the peak values and the mean concentrations of Z + ZR and IAA.However,the peak value and the mean concentration of ABA were significantly higher in inferior spikelets than in superior ones and greater in the super rice than in the check rice.The grain filling rate was positively and significantly correlated with the activities of SuSase,AGPase and StSase and the concentrations of Z + ZR and IAA.The results suggested that the low activities of SuSase,AGPase and StSase and the low concentrations of Z + ZR and IAA might be important physiological reasons for the slow grain filling rate and light grain weight of inferior spikelets in super rice.
基金This work was supported by the National Natural Science Foundation of China(31871567)the National Key Research and Development Program of China(2017YFD0300202-2)the Young Scholar of Tang(2017).
文摘Excessive use of nitrogen fertilizer and high planting density reduce grain weight in wheat.However,the effects of high nitrogen and planting density on the filling of grain located in different positions of the wheat spikelet are unknown.A two-year field experiment was conducted to investigate this question and the underlying mechanisms with respect to hormone and carbohydrate activity.Both high nitrogen application and planting density significantly increased spike density,while reducing kernel number per spike and 1000-kernel weight.However,the effects of high nitrogen and high plant density on kernel number per spike and 1000-kernel weight were different.The inhibitory effect of high nitrogen application and high planting density on kernel number per spike was achieved mainly by a reduction in kernel number per spikelet in the top and bottom spikelets.However,the decrease in 1000-kernel weight was contributed mainly by the reduced weight of grain in the middle spikelets.The grain-filling rate of inferior grain in the middle spikelets was significantly decreased under high nitrogen input and high planting density conditions,particularly during the early and middle grain-filling periods,leading to the suppression of grain filling and consequent decrease in grain weight.This effect resulted mainly from inhibited sucrose transport to and starch accumulation in inferior grain in the middle spikelets via reduction of the abscisic acid/ethylene ratio.This mechanism may explain how high nitrogen application and high planting density inhibit the grain filling of inferior wheat grain.