The further electrification of various fields in production and daily life makes it a topic worthy of exploration to improve the performance of capacitors for a long time,including thin-film capacitors.The discharge e...The further electrification of various fields in production and daily life makes it a topic worthy of exploration to improve the performance of capacitors for a long time,including thin-film capacitors.The discharge energy density of thin-film capacitors that serves as one of the important types directly depends on electric field strength and the dielectric constant of the insulation material.However,it has long been a great challenge to improve the breakdown strength and dielectric constant simultaneously.Considering that boron nitride nanosheets(BNNS)possess superior insulation and thermal conductivity owing to wide band gap and 2-dimensional structure,a bilayer polymer film is prepared via coating BNNS by solution casting on surface of polyethylene terephthalate(PET)films.By revealing the bandgap and insulating behavior with UV absorption spectrum,leakage current,and finite element calculation,it is manifested that nanocoating contributes to enhance the bandgap of polymer films,thereby suppressing the charge injection by redirecting their transport from electrodes.Worthy to note that an ultrahigh breakdown field strength(~736 MV m^(−1)),an excellent discharge energy density(~8.77 J cm^(−3))and a prominent charge-discharge efficiency(~96.51%)are achieved concurrently,which is ascribed to the contribution of BNNS ultrathin layer.In addition,the modified PET films also have superior comprehensive performance at high temperatures(~120°C).The materials and methods here selected are easily accessible and facile,which are suitable for large-scale roll-to-roll process production,and are of certain significance to explore the methods about film modification suitable for commercial promotion.展开更多
<span style="white-space:normal;">The study of high dielectric materials has received great attention lately as a key passive component for the application of metal-insulator-metal (MIM) capacitors. In...<span style="white-space:normal;">The study of high dielectric materials has received great attention lately as a key passive component for the application of metal-insulator-metal (MIM) capacitors. In this paper, 50 nm thick Al</span><sub style="white-space:normal;">2</sub><span style="white-space:normal;">O</span><sub style="white-space:normal;">3</sub><span style="white-space:normal;"> thin films have been prepared by atomic layer deposition technique on indium tin oxide (ITO) pre-coated glass substrates and titanium nitride (TiN) coated Si substrates with typical MIM capacitor structure. Photolithography and metal lift-off technique were used for processing of the MIM capacitors. Semiconductor Analyzer with probe station was used to perform capacitance-voltage (C-V) characterization with low-medium frequency range. Current-voltage (I-V) characteristics of MIM capacitors were measured on precision source/measurement system. The performance of Al</span><sub style="white-space:normal;">2</sub><span style="white-space:normal;">O</span><sub style="white-space:normal;">3</sub><span style="white-space:normal;"> films of MIM capacitors on glass was examined in the voltage range from <span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">−</span></span></span></span>5 to 5 V with a frequency range from 10 kHz to 5 MHz. Au/Al</span><sub style="white-space:normal;">2</sub><span style="white-space:normal;">O</span><sub style="white-space:normal;">3</sub><span style="white-space:normal;">/ITO/Glass MIM capacitors demonstrate a capacitance density of 1.6 fF/μm</span><sup style="white-space:normal;">2</sup><span style="white-space:normal;">at 100 kHz, a loss tangent ~0.005 at 100 kHz and a leakage current of 1.79 × 10</span><sup style="white-space:normal;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">−</span></span></span></span>8</sup><span style="white-space:normal;"> A/cm</span><sup style="white-space:normal;">2</sup><span style="white-space:normal;"> at 1 MV/cm (5 V) at room temperature. Au/Al</span><sub style="white-space:normal;">2</sub><span style="white-space:normal;">O</span><sub style="white-space:normal;">3</sub><span style="white-space:normal;">/TiN/Si MIM capacitors demonstrate a capacitance density of 1.5 fF/μm</span><sup style="white-space:normal;">2</sup><span style="white-space:normal;"> at 100 kHz, a loss tangent ~0.007 at 100 kHz and a lower leakage current of 2.93 × 10</span><sup style="white-space:normal;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">−</span></span></span></span>10</sup><span style="white-space:normal;"> A/cm</span><sup style="white-space:normal;">2</sup><span style="white-space:normal;"> at 1 MV/cm (5 V) at room temperature. The obtained electrical properties could indicate a promising application of MIM Capacitors.</span>展开更多
With advanced research for dielectrics including capacitors in DRAMs, decoupling filters in microcircuits and insulating gates in transistors, a lot of demand for the new challenging of high-k materials in semiconduct...With advanced research for dielectrics including capacitors in DRAMs, decoupling filters in microcircuits and insulating gates in transistors, a lot of demand for the new challenging of high-k materials in semiconductor industries has been emerged. This study explores and addresses the experimental approach for composite materials with one of the major concerns of high capacitance, and low leakage, as well as ease of integration technology. The characteristics of Al<sub>2</sub>O<sub>3</sub> supported HfO<sub>2</sub> (AHO) thin films for a series of different Hf ratios with Al<sub>2</sub>O<sub>3</sub> dielectrics by atomic layer deposition demonstrated as a candidate material. A composite AHO films with the homogeneous compositions of Al and Hf atoms into the Al-Hf-O mixed oxide system could stabilize the polycrystalline structure with increasing of dielectric constant (k) and decreasing of leakage current density, as well as a higher breakdown voltage than HfO<sub>2</sub> film on its own. 70 nm thick AHO thin films with different composition of Al and Hf contents were prepared by atomic layer deposition technique on titanium nitride (TiN) and silicon dioxide (SiO<sub>2</sub>) coated Si substrates. Photolithography and metal lift-off technique were used for the device fabrication of the metal-insulator-metal (MIM) capacitor structures. AHO films on TiN/SiO<sub>2</sub>/Si were measured by semiconductor analyzer and source/ measure system with probe station in the voltage range from -5 to 5 V with a frequency range from 10 kHz to 1 MHz were used to conduct capacitance-voltage (C-V) measurements with low/medium frequency range and current-voltage (I-V) measurements. It was found that Au/AHO/TiN/SiO<sub>2</sub>/Si MIM capacitors demonstrate a capacitance density of 1.5 - 4.5 fF/μm<sup>2</sup> at 10 kHz, a loss tangent of 0.02 - 0.04 at 10 kHz, dielectric constant of 11.7 - 35.5 depending on the composition and a low leakage current of 1.7 × 10<sup>-9</sup> A/cm<sup>2</sup> at 0.5 MV/cm at room temperature. The acquired experimental results could show the possibility of compositional alloy thin films that could potentially replace or open new market for high-k challenges in semiconductor technology.展开更多
Ru O2·n H2O film was deposited on tantalum foils by electrodeposition and heat treatment using Ru Cl3·3H2O as precursor.Surface morphology, composition change and cyclic voltammetry from precursor to amorpho...Ru O2·n H2O film was deposited on tantalum foils by electrodeposition and heat treatment using Ru Cl3·3H2O as precursor.Surface morphology, composition change and cyclic voltammetry from precursor to amorphous and crystalline RuO2·n H2O films were studied by X-ray diffractometer, Fourier transformation infrared spectrometer, differential thermal analyzer, scanning electron microscope and electrochemical analyzer, respectively. The results show that the precursor was transformed gradually from amorphous to crystalline phase with temperature. When heat treated at 300 °C for 2h, RuO2·n H2O electrode surface gains mass of2.5 mg/cm2 with specific capacitance of 782 F/g. Besides, it is found that the specific capacitance of the film decreased by roughly20% with voltage scan rate increasing from 5 to 250 m V/s.展开更多
DC-link capacitors play a vital role in managing ripple voltage and current in converters and various devices.This study focuses on exploring the aging characteristics of DC-link capacitors in alternating humid and th...DC-link capacitors play a vital role in managing ripple voltage and current in converters and various devices.This study focuses on exploring the aging characteristics of DC-link capacitors in alternating humid and thermal environments aligned with the operational conditions in photovoltaic and wind power applications.Adhering to relevant power equipment standards,we designed a 24-h alternating humid and thermal aging environment tailored to the requirements of DC-link capacitors.An aging test platform is established,and 20 widely used metallized polypropylene film capacitors are selected for evaluation.Parameters such as the capacitance,equivalent series resistance(ESR),and phase angle are assessed during aging,as well as the onset time and extent of aging at various intervals.This study focuses on the aging mechanisms,analyzing electrode corrosion,the self-healing process,and dielectric aging.Fitting the aging characteristics enabled us to calculate the lifespan of the capacitor and predict it under different degrees of capacitance decay.The results show that under alternating humid and thermal conditions,capacitance attenuation and ESR increase exhibit exponential nonlinearity,influenced by factors such as the oxidation and self-healing of capacitive metal electrodes,dielectric main-chain fracture,and crystal transformation.This study underscores the pivotal role of encapsulation in determining the aging decay time.展开更多
Operating conditions of film capacitors are complex,and the problem of film insulation failure caused by repetitively pulsed voltage is becoming ever serious.Degradation of the film under repetitively pulsed voltage c...Operating conditions of film capacitors are complex,and the problem of film insulation failure caused by repetitively pulsed voltage is becoming ever serious.Degradation of the film under repetitively pulsed voltage cannot be accurately evaluated by the average breakdown electric field.In this paper,the effects of pulsed electric field and pulse repetition frequency on the breakdown in biaxially oriented polypropylene(BOPP)films are investigated.Three phases of BOPP degradation are proposed based on the voltage amplitude,i.e.,maintenance(M),decline(D),and near-zero(N).Evolution of the BOPP film from degradation to breakdown at different frequencies is presented.Meanwhile,transition of discharge mode and elemental composition of the film are analyzed.Experimental results show continuous heat generation under repetitive microsecond pulses is the dominant factor for degradation of BOPP film.The number of applied pulses and the repetitive stressing time decrease exponentially with increase of frequency.This research can be contributed to the safe and reliable operation of capacitors.展开更多
Due to its lead-free composition and a unique double polarization hysteresis loop with a large maximum polarization(Pmax)and a small remnant polarization(Pr),AgNbO_(3)-based antiferroelectrics(AFEs)have attracted exte...Due to its lead-free composition and a unique double polarization hysteresis loop with a large maximum polarization(Pmax)and a small remnant polarization(Pr),AgNbO_(3)-based antiferroelectrics(AFEs)have attracted extensive research interest for electric energy storage applications.However,a low dielectric breakdown field(Eb)limits an energy density and its further development.In this work,a highly efficient method was proposed to fabricate high-energy-density Ag(Nb,Ta)O_(3) capacitor films on Si substrates,using a two-step process combining radio frequency(RF)-magnetron sputtering at 450℃and post-deposition rapid thermal annealing(RTA).The RTA process at 700℃led to sufficient crystallization of nanograins in the film,hindering their lateral growth by employing short annealing time of 5 min.The obtained Ag(Nb,Ta)O_(3) films showed an average grain size(D)of~14 nm(obtained by Debye-Scherrer formula)and a slender room temperature(RT)polarization-electric field(P-E)loop(Pr≈3.8 mC·cm^(−2) and P_(max)≈38 mC·cm^(−2) under an electric field of~3.3 MV·cm^(−1)),the P-E loop corresponding to a high recoverable energy density(W_(rec))of~46.4 J·cm^(−3) and an energy efficiency(η)of~80.3%.Additionally,by analyzing temperature-dependent dielectric property of the film,a significant downshift of the diffused phase transition temperature(T_(M2-M3))was revealed,which indicated the existence of a stable relaxor-like AFE phase near the RT.The downshift of the T_(M2-M3) could be attributed to a nanograin size and residual tensile strain of the film,and it led to excellent temperature stability(20-240℃)of the energy storage performance of the film.Our results indicate that the Ag(Nb,Ta)O_(3) film is a promising candidate for electrical energy storage applications.展开更多
We have investigated dielectric properties of aromatic polythiourea(ArPTU,a polar polymer containing high dipolar moments with very low defect levels)thin films that were developed on Pt/SiO_(2) substrate.The detected...We have investigated dielectric properties of aromatic polythiourea(ArPTU,a polar polymer containing high dipolar moments with very low defect levels)thin films that were developed on Pt/SiO_(2) substrate.The detected response is compared to the response of commercially available polymers,such as high density polyethylene(HDPE)and polypropylene(PP),which are at present used in foil capacitors.Stable values of the dielectric constantε'≈5(being twice higher than in HDPE and PP)over broad temperature and frequency ranges and dielectric losses as low as in commercial systems suggest ArPTU as a promising candidate for future use in a variety of applications.展开更多
Growing with the increased adoption of renewable energy for the power generation,the reliable and cost-effective operation of grid-connected inverters is of more and more importance.A filter is interfaced between an i...Growing with the increased adoption of renewable energy for the power generation,the reliable and cost-effective operation of grid-connected inverters is of more and more importance.A filter is interfaced between an inverter and the utility grid to reduce the switching harmonics.According to the modulation scheme and the LCL filter impedance,the electrical stresses of the filter capacitor can be thoroughly investigated.With the help of the electro-thermal model,its long-term thermal stress can be obtained based on the mission profile like wind speed,ambient temperature.The reliability of the filter capacitor bank is obtained based on its individual capacitor reliability curves and reliability block diagram method.A case study on a 2MW wind turbine system demonstrates the relationship between the lifetime of the capacitor bank and the single capacitor.Moreover,the severe voltage and current stresses of the filter capacitors are analyzed during abnormal operations(e.g.,fault ride-through)with asymmetrical parasitic parameters.展开更多
ZnO films coated with reduced graphene oxide(RGO-ZnO) were prepared by a simple chemical approach. The graphene oxide(GO) films transferred onto ZnO films by spin coating were reduced to RGO films by two steps(ex...ZnO films coated with reduced graphene oxide(RGO-ZnO) were prepared by a simple chemical approach. The graphene oxide(GO) films transferred onto ZnO films by spin coating were reduced to RGO films by two steps(exposed to hydrazine vapor for 12 h and annealed at 600 °C). The crystal structures, electrical and photoluminescence properties of RGO-ZnO films on quartz substrates were systematically studied. The SEM images illustrated that RGO layers have successfully been coated on the ZnO films very tightly. The PL properties of RGO-ZnO were studied. PL spectra show two sharp peaks at 390 nm and a broad visible emission around 490 nm.The resistivity of RGO-ZnO films was measured by a Hall measurement system, RGO as nanofiller considerably decrease the resistivity of ZnO films. An electrode was fabricated, using RGO-ZnO films deposited on Si substrate as active materials, for super capacitor application. By comparison of different results, we conclude that the RGOZnO composite material couples possess the properties of super capacitor.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.51937007,and 51921005)National Key Research and Development Program of China(No.2021YFB2401502).
文摘The further electrification of various fields in production and daily life makes it a topic worthy of exploration to improve the performance of capacitors for a long time,including thin-film capacitors.The discharge energy density of thin-film capacitors that serves as one of the important types directly depends on electric field strength and the dielectric constant of the insulation material.However,it has long been a great challenge to improve the breakdown strength and dielectric constant simultaneously.Considering that boron nitride nanosheets(BNNS)possess superior insulation and thermal conductivity owing to wide band gap and 2-dimensional structure,a bilayer polymer film is prepared via coating BNNS by solution casting on surface of polyethylene terephthalate(PET)films.By revealing the bandgap and insulating behavior with UV absorption spectrum,leakage current,and finite element calculation,it is manifested that nanocoating contributes to enhance the bandgap of polymer films,thereby suppressing the charge injection by redirecting their transport from electrodes.Worthy to note that an ultrahigh breakdown field strength(~736 MV m^(−1)),an excellent discharge energy density(~8.77 J cm^(−3))and a prominent charge-discharge efficiency(~96.51%)are achieved concurrently,which is ascribed to the contribution of BNNS ultrathin layer.In addition,the modified PET films also have superior comprehensive performance at high temperatures(~120°C).The materials and methods here selected are easily accessible and facile,which are suitable for large-scale roll-to-roll process production,and are of certain significance to explore the methods about film modification suitable for commercial promotion.
文摘<span style="white-space:normal;">The study of high dielectric materials has received great attention lately as a key passive component for the application of metal-insulator-metal (MIM) capacitors. In this paper, 50 nm thick Al</span><sub style="white-space:normal;">2</sub><span style="white-space:normal;">O</span><sub style="white-space:normal;">3</sub><span style="white-space:normal;"> thin films have been prepared by atomic layer deposition technique on indium tin oxide (ITO) pre-coated glass substrates and titanium nitride (TiN) coated Si substrates with typical MIM capacitor structure. Photolithography and metal lift-off technique were used for processing of the MIM capacitors. Semiconductor Analyzer with probe station was used to perform capacitance-voltage (C-V) characterization with low-medium frequency range. Current-voltage (I-V) characteristics of MIM capacitors were measured on precision source/measurement system. The performance of Al</span><sub style="white-space:normal;">2</sub><span style="white-space:normal;">O</span><sub style="white-space:normal;">3</sub><span style="white-space:normal;"> films of MIM capacitors on glass was examined in the voltage range from <span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">−</span></span></span></span>5 to 5 V with a frequency range from 10 kHz to 5 MHz. Au/Al</span><sub style="white-space:normal;">2</sub><span style="white-space:normal;">O</span><sub style="white-space:normal;">3</sub><span style="white-space:normal;">/ITO/Glass MIM capacitors demonstrate a capacitance density of 1.6 fF/μm</span><sup style="white-space:normal;">2</sup><span style="white-space:normal;">at 100 kHz, a loss tangent ~0.005 at 100 kHz and a leakage current of 1.79 × 10</span><sup style="white-space:normal;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">−</span></span></span></span>8</sup><span style="white-space:normal;"> A/cm</span><sup style="white-space:normal;">2</sup><span style="white-space:normal;"> at 1 MV/cm (5 V) at room temperature. Au/Al</span><sub style="white-space:normal;">2</sub><span style="white-space:normal;">O</span><sub style="white-space:normal;">3</sub><span style="white-space:normal;">/TiN/Si MIM capacitors demonstrate a capacitance density of 1.5 fF/μm</span><sup style="white-space:normal;">2</sup><span style="white-space:normal;"> at 100 kHz, a loss tangent ~0.007 at 100 kHz and a lower leakage current of 2.93 × 10</span><sup style="white-space:normal;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">−</span></span></span></span>10</sup><span style="white-space:normal;"> A/cm</span><sup style="white-space:normal;">2</sup><span style="white-space:normal;"> at 1 MV/cm (5 V) at room temperature. The obtained electrical properties could indicate a promising application of MIM Capacitors.</span>
文摘With advanced research for dielectrics including capacitors in DRAMs, decoupling filters in microcircuits and insulating gates in transistors, a lot of demand for the new challenging of high-k materials in semiconductor industries has been emerged. This study explores and addresses the experimental approach for composite materials with one of the major concerns of high capacitance, and low leakage, as well as ease of integration technology. The characteristics of Al<sub>2</sub>O<sub>3</sub> supported HfO<sub>2</sub> (AHO) thin films for a series of different Hf ratios with Al<sub>2</sub>O<sub>3</sub> dielectrics by atomic layer deposition demonstrated as a candidate material. A composite AHO films with the homogeneous compositions of Al and Hf atoms into the Al-Hf-O mixed oxide system could stabilize the polycrystalline structure with increasing of dielectric constant (k) and decreasing of leakage current density, as well as a higher breakdown voltage than HfO<sub>2</sub> film on its own. 70 nm thick AHO thin films with different composition of Al and Hf contents were prepared by atomic layer deposition technique on titanium nitride (TiN) and silicon dioxide (SiO<sub>2</sub>) coated Si substrates. Photolithography and metal lift-off technique were used for the device fabrication of the metal-insulator-metal (MIM) capacitor structures. AHO films on TiN/SiO<sub>2</sub>/Si were measured by semiconductor analyzer and source/ measure system with probe station in the voltage range from -5 to 5 V with a frequency range from 10 kHz to 1 MHz were used to conduct capacitance-voltage (C-V) measurements with low/medium frequency range and current-voltage (I-V) measurements. It was found that Au/AHO/TiN/SiO<sub>2</sub>/Si MIM capacitors demonstrate a capacitance density of 1.5 - 4.5 fF/μm<sup>2</sup> at 10 kHz, a loss tangent of 0.02 - 0.04 at 10 kHz, dielectric constant of 11.7 - 35.5 depending on the composition and a low leakage current of 1.7 × 10<sup>-9</sup> A/cm<sup>2</sup> at 0.5 MV/cm at room temperature. The acquired experimental results could show the possibility of compositional alloy thin films that could potentially replace or open new market for high-k challenges in semiconductor technology.
基金Project(S2013040015492)supported by the Natural Science Foundation of Guangdong Province,ChinaProject(2007AA03Z240)supported by Hi-tech Research and Development Program of China
文摘Ru O2·n H2O film was deposited on tantalum foils by electrodeposition and heat treatment using Ru Cl3·3H2O as precursor.Surface morphology, composition change and cyclic voltammetry from precursor to amorphous and crystalline RuO2·n H2O films were studied by X-ray diffractometer, Fourier transformation infrared spectrometer, differential thermal analyzer, scanning electron microscope and electrochemical analyzer, respectively. The results show that the precursor was transformed gradually from amorphous to crystalline phase with temperature. When heat treated at 300 °C for 2h, RuO2·n H2O electrode surface gains mass of2.5 mg/cm2 with specific capacitance of 782 F/g. Besides, it is found that the specific capacitance of the film decreased by roughly20% with voltage scan rate increasing from 5 to 250 m V/s.
基金Supported by the Opening Project of State Key Laboratory of Large Electric Drive System and Equipment Technology(SKLLDJ022020004).
文摘DC-link capacitors play a vital role in managing ripple voltage and current in converters and various devices.This study focuses on exploring the aging characteristics of DC-link capacitors in alternating humid and thermal environments aligned with the operational conditions in photovoltaic and wind power applications.Adhering to relevant power equipment standards,we designed a 24-h alternating humid and thermal aging environment tailored to the requirements of DC-link capacitors.An aging test platform is established,and 20 widely used metallized polypropylene film capacitors are selected for evaluation.Parameters such as the capacitance,equivalent series resistance(ESR),and phase angle are assessed during aging,as well as the onset time and extent of aging at various intervals.This study focuses on the aging mechanisms,analyzing electrode corrosion,the self-healing process,and dielectric aging.Fitting the aging characteristics enabled us to calculate the lifespan of the capacitor and predict it under different degrees of capacitance decay.The results show that under alternating humid and thermal conditions,capacitance attenuation and ESR increase exhibit exponential nonlinearity,influenced by factors such as the oxidation and self-healing of capacitive metal electrodes,dielectric main-chain fracture,and crystal transformation.This study underscores the pivotal role of encapsulation in determining the aging decay time.
基金supported in part by the National Natural Science Foundation of China-State Grid Joint Fund for Smart Grid under Grant U2166215.
文摘Operating conditions of film capacitors are complex,and the problem of film insulation failure caused by repetitively pulsed voltage is becoming ever serious.Degradation of the film under repetitively pulsed voltage cannot be accurately evaluated by the average breakdown electric field.In this paper,the effects of pulsed electric field and pulse repetition frequency on the breakdown in biaxially oriented polypropylene(BOPP)films are investigated.Three phases of BOPP degradation are proposed based on the voltage amplitude,i.e.,maintenance(M),decline(D),and near-zero(N).Evolution of the BOPP film from degradation to breakdown at different frequencies is presented.Meanwhile,transition of discharge mode and elemental composition of the film are analyzed.Experimental results show continuous heat generation under repetitive microsecond pulses is the dominant factor for degradation of BOPP film.The number of applied pulses and the repetitive stressing time decrease exponentially with increase of frequency.This research can be contributed to the safe and reliable operation of capacitors.
基金support from the National Natural Science Foundation of China (Grant Nos.51772175,52072218,and 52002192)Natural Science Foundation of Shandong Province (Grant Nos.ZR2020QE042,ZR2022ZD39,and ZR2022ME031)+6 种基金the Science,Education and Industry Integration Pilot Projects of Qilu University of Technology (Shandong Academy of Sciences) (Grant Nos.2022GH018 and 2022PY055)support from the Jinan City Science and Technology Bureau (Grant No.2021GXRC055)the Education Department of Hunan Province/Xiangtan University (Grant No.KZ0807969)funding for top talents at Qilu University of Technology (Shandong Academy of Sciences)support from the Jiangsu Province NSFC (Grant No.BK20180764)support from the National Key R&D Program of China (Grant No.2021YFB3601504)Natural Science Foundation of Shandong Province (Grant No.ZR2020KE019).
文摘Due to its lead-free composition and a unique double polarization hysteresis loop with a large maximum polarization(Pmax)and a small remnant polarization(Pr),AgNbO_(3)-based antiferroelectrics(AFEs)have attracted extensive research interest for electric energy storage applications.However,a low dielectric breakdown field(Eb)limits an energy density and its further development.In this work,a highly efficient method was proposed to fabricate high-energy-density Ag(Nb,Ta)O_(3) capacitor films on Si substrates,using a two-step process combining radio frequency(RF)-magnetron sputtering at 450℃and post-deposition rapid thermal annealing(RTA).The RTA process at 700℃led to sufficient crystallization of nanograins in the film,hindering their lateral growth by employing short annealing time of 5 min.The obtained Ag(Nb,Ta)O_(3) films showed an average grain size(D)of~14 nm(obtained by Debye-Scherrer formula)and a slender room temperature(RT)polarization-electric field(P-E)loop(Pr≈3.8 mC·cm^(−2) and P_(max)≈38 mC·cm^(−2) under an electric field of~3.3 MV·cm^(−1)),the P-E loop corresponding to a high recoverable energy density(W_(rec))of~46.4 J·cm^(−3) and an energy efficiency(η)of~80.3%.Additionally,by analyzing temperature-dependent dielectric property of the film,a significant downshift of the diffused phase transition temperature(T_(M2-M3))was revealed,which indicated the existence of a stable relaxor-like AFE phase near the RT.The downshift of the T_(M2-M3) could be attributed to a nanograin size and residual tensile strain of the film,and it led to excellent temperature stability(20-240℃)of the energy storage performance of the film.Our results indicate that the Ag(Nb,Ta)O_(3) film is a promising candidate for electrical energy storage applications.
基金This project was financially supported by the Slovenian Research Agency under program P1-0125the Ministry of Education,Science,and Sport of Republic of Slovenia and European Social Fund under project PR-05648the Office of Naval Research(ONR)under Grant No.N00014-14-1-0109.
文摘We have investigated dielectric properties of aromatic polythiourea(ArPTU,a polar polymer containing high dipolar moments with very low defect levels)thin films that were developed on Pt/SiO_(2) substrate.The detected response is compared to the response of commercially available polymers,such as high density polyethylene(HDPE)and polypropylene(PP),which are at present used in foil capacitors.Stable values of the dielectric constantε'≈5(being twice higher than in HDPE and PP)over broad temperature and frequency ranges and dielectric losses as low as in commercial systems suggest ArPTU as a promising candidate for future use in a variety of applications.
文摘Growing with the increased adoption of renewable energy for the power generation,the reliable and cost-effective operation of grid-connected inverters is of more and more importance.A filter is interfaced between an inverter and the utility grid to reduce the switching harmonics.According to the modulation scheme and the LCL filter impedance,the electrical stresses of the filter capacitor can be thoroughly investigated.With the help of the electro-thermal model,its long-term thermal stress can be obtained based on the mission profile like wind speed,ambient temperature.The reliability of the filter capacitor bank is obtained based on its individual capacitor reliability curves and reliability block diagram method.A case study on a 2MW wind turbine system demonstrates the relationship between the lifetime of the capacitor bank and the single capacitor.Moreover,the severe voltage and current stresses of the filter capacitors are analyzed during abnormal operations(e.g.,fault ride-through)with asymmetrical parasitic parameters.
基金supported by the National Natural Science Foundation of China(Nos.61464005,51562015)the Natural Science Foundation of Jiangxi Province(Nos.20143ACB21004,20151BAB212008,20171BAB216015)+2 种基金the Jiangxi Province Foreign Cooperation Projects,China(No.20151BDH80031)the Leader Training Object Project of Major Disciplines Academic and Technical of Jiangxi Province(No.20123BCB22002)the Key Technology R&D Program of the Jiangxi Provine of Science and Technology(No.20171BBE50053)
文摘ZnO films coated with reduced graphene oxide(RGO-ZnO) were prepared by a simple chemical approach. The graphene oxide(GO) films transferred onto ZnO films by spin coating were reduced to RGO films by two steps(exposed to hydrazine vapor for 12 h and annealed at 600 °C). The crystal structures, electrical and photoluminescence properties of RGO-ZnO films on quartz substrates were systematically studied. The SEM images illustrated that RGO layers have successfully been coated on the ZnO films very tightly. The PL properties of RGO-ZnO were studied. PL spectra show two sharp peaks at 390 nm and a broad visible emission around 490 nm.The resistivity of RGO-ZnO films was measured by a Hall measurement system, RGO as nanofiller considerably decrease the resistivity of ZnO films. An electrode was fabricated, using RGO-ZnO films deposited on Si substrate as active materials, for super capacitor application. By comparison of different results, we conclude that the RGOZnO composite material couples possess the properties of super capacitor.
基金supported by the National Key Research&Development Program of China(2021YFB3800603)the National Natural Science Foundation of China(52222205 and 52072280)+1 种基金the Basic Science Center Program of the National Natural Science Foundation of China(51788104)the National Innovation and Entrepreneurship Training Program for College Students(S202210497035)。