In order to achieve the objective of controlling IR radiation characteristics of space target,we design multilayer insulation film structure to cover the target.In space environment the structure comes to cryogenic va...In order to achieve the objective of controlling IR radiation characteristics of space target,we design multilayer insulation film structure to cover the target.In space environment the structure comes to cryogenic vacuum multilayer insulation film structure.It can quickly lower the surface temperature of space target,approaching to the ultra-low temperature of the space environment.A vacuum simulation verification test was designed and performed.Through the analysis of test results,we can see that the surface temperature of space target covered by the structure changes with the ambient temperature,having no direct relationship with internal temperature of the target.Therefore,the designed cryogenic vacuum multilayer insulation film structure has excellent IR radiation control performance.It can reduce the target’s IR radiation intensity so as to reduce the probability of detection by IR detectors.展开更多
In this work the elastic field of an edge dislocation in a half-space with the effect of surface energy has been obtained. The elastic field is then used to study the image force on the dislocation, the critical thick...In this work the elastic field of an edge dislocation in a half-space with the effect of surface energy has been obtained. The elastic field is then used to study the image force on the dislocation, the critical thickness for dislocation generation in epitaxial thin films with strain mismatch and the yielding strength of thin films on substrates. The results show that the image forces on the dislocation deviate from the conventional solutions when the distance of the dislocation from the free surface is smaller than several times of the characteristic length. Also due to the effect of surface energy, the critical thickness for dislocation generation is smaller than that predicted by the conventional elastic solutions and the extent of the deviation depends on the magnitude of mismatch strain. In contrast, the effect of surface energy on the yielding strength for many practical thin films can be neglected except for some soft ones where the characteristic length is comparable to the thickness.展开更多
It is investigated theoretically the amplification of space charge waves (SCWs) due to the negative differential conduc-tivity (NDC) in n-GaN films of submicron thicknesses placed onto a semi-infinite substrate. The i...It is investigated theoretically the amplification of space charge waves (SCWs) due to the negative differential conduc-tivity (NDC) in n-GaN films of submicron thicknesses placed onto a semi-infinite substrate. The influence of the nonlo-cal dependence of the average electron velocity on the electron energy is considered. The simplest nonlocal model is used where the total electron concentration is taken into account. The relaxation momentum and energy frequencies have been calculated. The influence of the nonlocality on NDC results in the decrease of the absolute value of its real part and appearance of the imaginary part. The calculation of the diffusion coefficient leads to essential errors. The simulations of spatial increments of the amplification of SCWs demonstrate that the nonlocality is essential at the fre-quencies f ? 150 GHz, and the amplification is possible up till the frequencies f ? 400 ??? 500 GHz.展开更多
Numerical simulations of nonlinear interaction of space charge waves in microwave and millimeter wave range in n-InN films have been carried out. A micro- and millimeter-waves frequency conversion using the negative d...Numerical simulations of nonlinear interaction of space charge waves in microwave and millimeter wave range in n-InN films have been carried out. A micro- and millimeter-waves frequency conversion using the negative differential conductivity phenomenon is carried out when the harmonics of the input signal are generated. An increment in the amplification is observed in n-InN films at essentially at high-frequencies f < 450 GHz, when compared with n-GaAs films f < 44 GHz. This work provides a way to achieve a frequency conversion and amplification of micro- and millimeter-waves.展开更多
基金Sponsored by the High-tech Research and Development Program of China (Grant No. 2007AA701101B)
文摘In order to achieve the objective of controlling IR radiation characteristics of space target,we design multilayer insulation film structure to cover the target.In space environment the structure comes to cryogenic vacuum multilayer insulation film structure.It can quickly lower the surface temperature of space target,approaching to the ultra-low temperature of the space environment.A vacuum simulation verification test was designed and performed.Through the analysis of test results,we can see that the surface temperature of space target covered by the structure changes with the ambient temperature,having no direct relationship with internal temperature of the target.Therefore,the designed cryogenic vacuum multilayer insulation film structure has excellent IR radiation control performance.It can reduce the target’s IR radiation intensity so as to reduce the probability of detection by IR detectors.
文摘In this work the elastic field of an edge dislocation in a half-space with the effect of surface energy has been obtained. The elastic field is then used to study the image force on the dislocation, the critical thickness for dislocation generation in epitaxial thin films with strain mismatch and the yielding strength of thin films on substrates. The results show that the image forces on the dislocation deviate from the conventional solutions when the distance of the dislocation from the free surface is smaller than several times of the characteristic length. Also due to the effect of surface energy, the critical thickness for dislocation generation is smaller than that predicted by the conventional elastic solutions and the extent of the deviation depends on the magnitude of mismatch strain. In contrast, the effect of surface energy on the yielding strength for many practical thin films can be neglected except for some soft ones where the characteristic length is comparable to the thickness.
文摘It is investigated theoretically the amplification of space charge waves (SCWs) due to the negative differential conduc-tivity (NDC) in n-GaN films of submicron thicknesses placed onto a semi-infinite substrate. The influence of the nonlo-cal dependence of the average electron velocity on the electron energy is considered. The simplest nonlocal model is used where the total electron concentration is taken into account. The relaxation momentum and energy frequencies have been calculated. The influence of the nonlocality on NDC results in the decrease of the absolute value of its real part and appearance of the imaginary part. The calculation of the diffusion coefficient leads to essential errors. The simulations of spatial increments of the amplification of SCWs demonstrate that the nonlocality is essential at the fre-quencies f ? 150 GHz, and the amplification is possible up till the frequencies f ? 400 ??? 500 GHz.
文摘Numerical simulations of nonlinear interaction of space charge waves in microwave and millimeter wave range in n-InN films have been carried out. A micro- and millimeter-waves frequency conversion using the negative differential conductivity phenomenon is carried out when the harmonics of the input signal are generated. An increment in the amplification is observed in n-InN films at essentially at high-frequencies f < 450 GHz, when compared with n-GaAs films f < 44 GHz. This work provides a way to achieve a frequency conversion and amplification of micro- and millimeter-waves.