The three stages in the hot-drawing process of ultrahigh-molecular-weight polyethylene gel films can be detected by x-ray diffraction, infrared spectroscopy, birefringence and scanning electron microscopy. In the firs...The three stages in the hot-drawing process of ultrahigh-molecular-weight polyethylene gel films can be detected by x-ray diffraction, infrared spectroscopy, birefringence and scanning electron microscopy. In the first stage of the drawing process, the lamellae in the gel films rotate and/or slip with the b-axis preferentially perpendicular to the drawing direction. With increased drawing, the c-axis of the lamellae become parallel to the stretching direction while unfolding of the chain begins, and the chains of the amorphous phase also orient along the drawing direction in the strain-chain domain. When the draw ratio is large enough, the lamellar structure is transformed into a fibrillar structure in a two-dimensional fashion.展开更多
The flat cylindrical indentation tests with different sizes of punch radius were investigated using finite element method (FEM) aimed to reveal the effect of punch size on the indentation behavior of the film/substr...The flat cylindrical indentation tests with different sizes of punch radius were investigated using finite element method (FEM) aimed to reveal the effect of punch size on the indentation behavior of the film/substrate system. Based on the FEM results analysis, two methods was proposed to separate film's reduced Young's modulus from a film/substrate system. The first method was based on a new weight function that quantifies film's and substrate's contributions to the overall mechanical properties of the film/substrate system in the flat cylindrical indentation test. The second method, a numerical approach, including fitting and extrapolation procedures was put forward. Both of the results from the two methods showed a reasonable agreement with the one input FE model. At last, the effect of maximum indentation depth and the surface micro-roughness of the thin film on the reduced Young's modulus of the film/substrate system were discussed. The methods proposed in the present study provide some new conceptions on evaluating other properties of thin films, e.g. creep, for which a flat-ended punch is also employed.展开更多
文摘The three stages in the hot-drawing process of ultrahigh-molecular-weight polyethylene gel films can be detected by x-ray diffraction, infrared spectroscopy, birefringence and scanning electron microscopy. In the first stage of the drawing process, the lamellae in the gel films rotate and/or slip with the b-axis preferentially perpendicular to the drawing direction. With increased drawing, the c-axis of the lamellae become parallel to the stretching direction while unfolding of the chain begins, and the chains of the amorphous phase also orient along the drawing direction in the strain-chain domain. When the draw ratio is large enough, the lamellar structure is transformed into a fibrillar structure in a two-dimensional fashion.
基金supports from National Natural Science Foundation of China (Nos.50775183 and 50805118)Research Fund for Doctoral Programof higher Education (N6CJ0001)National High Technical Research and Development Programme of China (No.2009AA04Z418)
文摘The flat cylindrical indentation tests with different sizes of punch radius were investigated using finite element method (FEM) aimed to reveal the effect of punch size on the indentation behavior of the film/substrate system. Based on the FEM results analysis, two methods was proposed to separate film's reduced Young's modulus from a film/substrate system. The first method was based on a new weight function that quantifies film's and substrate's contributions to the overall mechanical properties of the film/substrate system in the flat cylindrical indentation test. The second method, a numerical approach, including fitting and extrapolation procedures was put forward. Both of the results from the two methods showed a reasonable agreement with the one input FE model. At last, the effect of maximum indentation depth and the surface micro-roughness of the thin film on the reduced Young's modulus of the film/substrate system were discussed. The methods proposed in the present study provide some new conceptions on evaluating other properties of thin films, e.g. creep, for which a flat-ended punch is also employed.