Filter bank multicarrier quadrature amplitude modulation(FBMC-QAM)will encounter inter-ference and noise during the process of channel transmission.In order to suppress the interference in the communication system,cha...Filter bank multicarrier quadrature amplitude modulation(FBMC-QAM)will encounter inter-ference and noise during the process of channel transmission.In order to suppress the interference in the communication system,channel equalization is carried out at the receiver.Given that the con-ventional least mean square(LMS)equilibrium algorithm usually suffer from drawbacks such as the inability to converge quickly in large step sizes and poor stability in small step sizes when searching for optimal weights,in this paper,a design scheme for adaptive equalization with dynamic step size LMS optimization is proposed,which can further improve the convergence and error stability of the algorithm by calling the Sigmoid function and introducing three new parameters to control the range of step size values,adjust the steepness of step size,and reduce steady-state errors in small step sta-ges.Theoretical analysis and simulation results demonstrate that compared with the conventional LMS algorithm and the neural network-based residual deep neural network(Res-DNN)algorithm,the adopted dynamic step size LMS optimization scheme can not only obtain faster convergence speed,but also get smaller error values in the signal recovery process,thereby achieving better bit error rate(BER)performance.展开更多
A correlation overlapping partial transmit sequence(C-OPTS) algorithm is proposed to solve the issue of high complexity of overlapping partial transmit sequence(OPTS) algorithm in suppressing the peak to average power...A correlation overlapping partial transmit sequence(C-OPTS) algorithm is proposed to solve the issue of high complexity of overlapping partial transmit sequence(OPTS) algorithm in suppressing the peak to average power ratio(PAPR) of filter bank multicarrier-offset quadrature amplitude modulation(FBMC-OQAM) signals.The V subblocks in partial transmit sequence(PTS) are regrouped into U combinations according to the correlation coefficient p,and overlapping subblocks are allowed between adjacent groups.The search starts from the first group and sets the phase factors of the subsequent groups to 1.When the phase factors of the non-overlapping subblocks in the first group are determined,the subsequent groups are searched in turn to determine their respective phase factors.Starting from the second data block,the data overlapped with it should be taken into account when determining its optimal phase factor vector.Theoretical analysis and simulation results indicate that compared with the OPTS algorithm,the proposed algorithm can significantly reduce the computational complexity at the cost of slight deterioration of PAPR performance.Meanwhile,compared with the even-odd iterative double-layers OPTS(ID-OPTS) algorithm,it can further reduce the complexity and obtain a better PAPR suppression effect.展开更多
Compared to OFDM systems with cyclic prefi x, fi lterbank multicarrier with offset quadrature amplitude modulation(FBMC/OQAM) system is considered as an alternative technology for next generation wireless communicatio...Compared to OFDM systems with cyclic prefi x, fi lterbank multicarrier with offset quadrature amplitude modulation(FBMC/OQAM) system is considered as an alternative technology for next generation wireless communication systems. However, FBMC systems suffer from intrinsic imaginary interference caused by the real-fi eld orthogonality destruction when passing through complex-valued fading channels. By analyzing the transmultiplexer's response of FBMC/OQAM systems, in this paper, a simple conjugated transmission scheme is proposed for FBMC/OQAM systems. Following the specific conjugation design, the intrinsic imaginary interference including the intrinsic inter-symbol and the inter-carrier interference can be eliminated at the receiver side through linear signal processing operation. Meanwhile, the proposed conjugated transmission scheme is able to obtain extra linear combination diversity gains for improving the systematic performance of FBMC/OQAM. Simulation results show that the proposed scheme is more efficient than conventional methods, especially in practical application scenarios with large Doppler spread caused by high-speed movement.展开更多
基金the National Natural Science Foundation of China(No.61601296,61701295)the Science and Technology Innovation Action Plan Project of Shanghai Science and Technology Commission(No.20511103500)the Talent Program of Shanghai University of Engineering Science(No.2018RC43).
文摘Filter bank multicarrier quadrature amplitude modulation(FBMC-QAM)will encounter inter-ference and noise during the process of channel transmission.In order to suppress the interference in the communication system,channel equalization is carried out at the receiver.Given that the con-ventional least mean square(LMS)equilibrium algorithm usually suffer from drawbacks such as the inability to converge quickly in large step sizes and poor stability in small step sizes when searching for optimal weights,in this paper,a design scheme for adaptive equalization with dynamic step size LMS optimization is proposed,which can further improve the convergence and error stability of the algorithm by calling the Sigmoid function and introducing three new parameters to control the range of step size values,adjust the steepness of step size,and reduce steady-state errors in small step sta-ges.Theoretical analysis and simulation results demonstrate that compared with the conventional LMS algorithm and the neural network-based residual deep neural network(Res-DNN)algorithm,the adopted dynamic step size LMS optimization scheme can not only obtain faster convergence speed,but also get smaller error values in the signal recovery process,thereby achieving better bit error rate(BER)performance.
基金Supported by the National Natural Science Foundation of China(No.61601296,61701295,61801286)the Major Scientific and Technological Innovation Projects in Chengdu(No.2019-YF08-00082-GX)the Talent Program of Shanghai University of Engineering Science(No.2018RC43)。
文摘A correlation overlapping partial transmit sequence(C-OPTS) algorithm is proposed to solve the issue of high complexity of overlapping partial transmit sequence(OPTS) algorithm in suppressing the peak to average power ratio(PAPR) of filter bank multicarrier-offset quadrature amplitude modulation(FBMC-OQAM) signals.The V subblocks in partial transmit sequence(PTS) are regrouped into U combinations according to the correlation coefficient p,and overlapping subblocks are allowed between adjacent groups.The search starts from the first group and sets the phase factors of the subsequent groups to 1.When the phase factors of the non-overlapping subblocks in the first group are determined,the subsequent groups are searched in turn to determine their respective phase factors.Starting from the second data block,the data overlapped with it should be taken into account when determining its optimal phase factor vector.Theoretical analysis and simulation results indicate that compared with the OPTS algorithm,the proposed algorithm can significantly reduce the computational complexity at the cost of slight deterioration of PAPR performance.Meanwhile,compared with the even-odd iterative double-layers OPTS(ID-OPTS) algorithm,it can further reduce the complexity and obtain a better PAPR suppression effect.
基金supported by the MOST Program of International S&T Cooperation(Grant No.2016YFE0123200)National Natural Science Foundation of China(Grant No.61471100/61101090/61571082)+1 种基金Science and Technology on Electronic Information Control Laboratory(Grant No.6142105040103)Fundamental Research Funds for the Central Universities(Grant No.ZYGX2015J012/ZYGX2014Z005)
文摘Compared to OFDM systems with cyclic prefi x, fi lterbank multicarrier with offset quadrature amplitude modulation(FBMC/OQAM) system is considered as an alternative technology for next generation wireless communication systems. However, FBMC systems suffer from intrinsic imaginary interference caused by the real-fi eld orthogonality destruction when passing through complex-valued fading channels. By analyzing the transmultiplexer's response of FBMC/OQAM systems, in this paper, a simple conjugated transmission scheme is proposed for FBMC/OQAM systems. Following the specific conjugation design, the intrinsic imaginary interference including the intrinsic inter-symbol and the inter-carrier interference can be eliminated at the receiver side through linear signal processing operation. Meanwhile, the proposed conjugated transmission scheme is able to obtain extra linear combination diversity gains for improving the systematic performance of FBMC/OQAM. Simulation results show that the proposed scheme is more efficient than conventional methods, especially in practical application scenarios with large Doppler spread caused by high-speed movement.