This study is to assess the prevalence rates spatial pattern of neural tube defects with geographic information system and spatial filtering technique. A total of 80 infants who diagnosed from neural tube defects in t...This study is to assess the prevalence rates spatial pattern of neural tube defects with geographic information system and spatial filtering technique. A total of 80 infants who diagnosed from neural tube defects in the area being studied between 1998 and 2001 were analyzed. Firstly, the geographic information system (GIS) software ArcGIS was used to map the crude prevalence rates. Secondly, the data were smoothed by the method of spatial filtering. We evaluated that the effect of changes in spatial filtering radius size was assessed by creating maps based on various filtering radius sizes. The 3 miles or larger filtering radius gives better section variability than the 2 and 2.5 miles or smaller ones. The maps produced by the spatial filtering technique indicate that prevalence rates in the villages in the southeastern region are to produce higher prevalence than that in the other regions. The smoothed maps based on Heshun County display a more adequate data representation than the raw prevalence rate map.展开更多
Context: Medical imaging has a wide range of applications in today’s society. Basic projectional radiography, CT scans, mammograms and a range of other advanced technologies all use x-rays to create a large number of...Context: Medical imaging has a wide range of applications in today’s society. Basic projectional radiography, CT scans, mammograms and a range of other advanced technologies all use x-rays to create a large number of examinations every day across the world. The most essential component of such medical equipment is the x-ray tube, which creates and produces x-rays. Objective: We describe and investigate an abstract model-geometry of a simple x-ray tube utilizing the open-source software package of BEAMnrc of the EGSnrcmp family, which is well validated by several studies over the years, for high and low energy photons generation. Methodology: Our research focuses on two different electron beam energies: 120 keV and 30 keV. The 120 keV is the typical energy for simple projectional radiographic exams and CT examinations, whereas the 30 keV is the typical energy of mammography. Results: Two different anode materials are used for each case, Gold (Au) and Tungsten (W) for 120 keV because these are the most common in projectional radiography and CT;Molybdenum (Mo) and Rhodium (Rh) for 30 keV because with these targets most mammography exams are carried out. The aim of this work is to show how the BEAMnrc software package can simulate effectively x-ray generation of low-energy photons which are utilized in modern medical imaging procedures. We describe useful information on anode-target characteristics, such as anode angle, anode material, and metal filter materials, based on previous quality studies even by using software other than BEAMnrc. Conclusion: We demonstrate that BEAMnrc can be efficiently used for Monte Carlo modeling of low-energy photons.展开更多
基金Supported by the National Basic Reserch Program of China (973 Program) (2001CB5103)the National Natural Science Foundation of China (40471111 and 70571076).
文摘This study is to assess the prevalence rates spatial pattern of neural tube defects with geographic information system and spatial filtering technique. A total of 80 infants who diagnosed from neural tube defects in the area being studied between 1998 and 2001 were analyzed. Firstly, the geographic information system (GIS) software ArcGIS was used to map the crude prevalence rates. Secondly, the data were smoothed by the method of spatial filtering. We evaluated that the effect of changes in spatial filtering radius size was assessed by creating maps based on various filtering radius sizes. The 3 miles or larger filtering radius gives better section variability than the 2 and 2.5 miles or smaller ones. The maps produced by the spatial filtering technique indicate that prevalence rates in the villages in the southeastern region are to produce higher prevalence than that in the other regions. The smoothed maps based on Heshun County display a more adequate data representation than the raw prevalence rate map.
文摘Context: Medical imaging has a wide range of applications in today’s society. Basic projectional radiography, CT scans, mammograms and a range of other advanced technologies all use x-rays to create a large number of examinations every day across the world. The most essential component of such medical equipment is the x-ray tube, which creates and produces x-rays. Objective: We describe and investigate an abstract model-geometry of a simple x-ray tube utilizing the open-source software package of BEAMnrc of the EGSnrcmp family, which is well validated by several studies over the years, for high and low energy photons generation. Methodology: Our research focuses on two different electron beam energies: 120 keV and 30 keV. The 120 keV is the typical energy for simple projectional radiographic exams and CT examinations, whereas the 30 keV is the typical energy of mammography. Results: Two different anode materials are used for each case, Gold (Au) and Tungsten (W) for 120 keV because these are the most common in projectional radiography and CT;Molybdenum (Mo) and Rhodium (Rh) for 30 keV because with these targets most mammography exams are carried out. The aim of this work is to show how the BEAMnrc software package can simulate effectively x-ray generation of low-energy photons which are utilized in modern medical imaging procedures. We describe useful information on anode-target characteristics, such as anode angle, anode material, and metal filter materials, based on previous quality studies even by using software other than BEAMnrc. Conclusion: We demonstrate that BEAMnrc can be efficiently used for Monte Carlo modeling of low-energy photons.