This ranearch is focused on the, develonment of a simnle design model of the submerged catalysis/membrane filtration (catalysis/MF) system for phenol hydroxylation over TS-1 based on the material balance of the phen...This ranearch is focused on the, develonment of a simnle design model of the submerged catalysis/membrane filtration (catalysis/MF) system for phenol hydroxylation over TS-1 based on the material balance of the phenol under steady state and the reported kinetic studies. Based on the developed model, the theoretical phenol Conversions at steady state could be calculated using the kinetic parameters obtained from the previous batch experiments. The theoretical conversions are in good agreement with the experimental data obtained in the submerged catalysis/MF system within relative error of ±5%. The model can be used to determine the optimal experimental conditions to carry out the phenol hydroxylation over TS-1 in the submerged catalysis/MF system.展开更多
Drinking water is supplied through a centralized water supply system and may not be accessed by communities in rural areas of Malaysia.This study investigated the performance of a low-cost, self-prepared combined acti...Drinking water is supplied through a centralized water supply system and may not be accessed by communities in rural areas of Malaysia.This study investigated the performance of a low-cost, self-prepared combined activated carbon and sand filtration(CACSF) system for roofharvested rainwater and lake water for potable use. Activated carbon was self-prepared using locally sourced coconut shell and was activated using commonly available salt rather than a high-tech procedure that requires a chemical reagent. The filtration chamber was comprised of local,readily available sand. The experiments were conducted with varying antecedent dry intervals(ADIs) of up to 15 d and lake water with varying initial chemical oxygen demand(COD) concentration. The CACSF system managed to produce effluents complying with the drinking water standards for the parameters p H, dissolved oxygen(DO), biochemical oxygen demand(BOD5), COD, total suspended solids(TSS), and ammonia nitrogen(NH_3-N). The CACSF system successfully decreased the population of Escherichia coli(E. coli) in the influents to less than 30 CFU/m L. Samples with a higher population of E. coli(that is, greater than 30 CFU/m L) did not show 100% removal. The system also showed high potential as an alternative for treated drinking water for roof-harvested rainwater and class II lake water.展开更多
The conventional fixed-bed biofilm process has disadvantages of easily blocked,high headloss and short operation cycle.For overcoming these disadvantages,a multi-stage biofilm reactor(MSBFR),in which the lightweight f...The conventional fixed-bed biofilm process has disadvantages of easily blocked,high headloss and short operation cycle.For overcoming these disadvantages,a multi-stage biofilm reactor(MSBFR),in which the lightweight floating filter was dominant,was set up and operated.For detail investigation of the system when treating municipal wastewater,the succession characteristic of microbial community was analyzed by polymerase chain reaction(PCR)-Denaturing Gradient Gel Electrophoresis(DGGE)method.The results showed that the process had high efficiency to removal COD,SS and NH4+-N.The concentration of COD,SS and NH4-N in effluent were maintained lower than 40 mg/L,5 mg/L and 2 mg/L even though the concentration of COD,SS and NH4+-N in influent were 232-663 mg/L,105-245 mg/L and 23.7-62.7 mg/L,respectively,and the empty bed retention time was 3 h.Furthermore,biofilm samples taken from the column 2nd in height were analyzed by PCR-DGGE.The result of PCR-DGGE analysis showed that the microbial community had a little change in height and the dominant groups were Paracoccus sp.,Lactobacillus delbrueckii,Pseudomonas sp.and Bacteroidetes bacterium.展开更多
Urbanization in developing countries often negatively impacts water re-sources by polluting surface waters. Addis Ababa, Ethiopia, is currently experiencing rapid urbanization accompanied by significant water shortage...Urbanization in developing countries often negatively impacts water re-sources by polluting surface waters. Addis Ababa, Ethiopia, is currently experiencing rapid urbanization accompanied by significant water shortages, unmanaged stormwater, and increasing river water pollution. To supplement the need for non-potable water and address stormwater runoff pollution, we constructed a low cost stormwater filtration system. The filtration system is comprised of a sedimentation area followed by three gravel grain sizes arranged horizontally from coarse to medium to fine filter media. We compared the quality of pretreatment water with post-treatment water by measuring physicochemical parameters, heavy metals and nutrients. We found that the filtration system reduced turbidity by 87%, TSS by 80%, Cu by 87% and Zn by 90%. Further, it positively increased the concentration of DO by 42%. However, the filtration system did not remove nitrates and nitrites. Implementing this system at outfalls in the rapidly expanding condominium housing areas can increase residents’ supply of non-potable water and reduce the amount of polluted stormwater entering nearby streams and rivers.展开更多
A filtration system used without chemical agents for the pretreatment of turbid coal mine drainage is described in this paper.The influence of different aperture sizes and different motor speeds was investigated durin...A filtration system used without chemical agents for the pretreatment of turbid coal mine drainage is described in this paper.The influence of different aperture sizes and different motor speeds was investigated during the study.The experimental results show that for aperture diameters of 0.4,0.6,or 0.8 mm smaller apertures provide more complete filtration.Rotations of 12,20,28,or 40 r/min show that higher speeds give more efficient filtration.Suspended solids decreased in both particle size and concentration after the filtration.The separated slime can be directly reused as a fuel.Efficient filtration pretreatment systems for coal mine drainage were investigated and the economic feasibility is analyzed in this article.展开更多
The righteous book of Al-Quran mentions that the basic need of the living thing in this world is water. Resident of rural areas such as indigenous people will tap the highland aquatic resources as the main foundation ...The righteous book of Al-Quran mentions that the basic need of the living thing in this world is water. Resident of rural areas such as indigenous people will tap the highland aquatic resources as the main foundation for water. The reservoir is built on the top of hilly area to collect water before it discharges through a pipe system that uses the force of gravity to go down to the settlements. However, the filtration system frequently clogs and requires the occupants to climb up the reservoir hill for cleaning process. A lot of energy and time are required to manage the irrigation systems. Thus, an innovation system has been conducted as the filters will be cleaned automatically using solar energy supply. The designs of the filters are specially designed as the filter is equipped with electric motors, washer rods, power supply units, and automatic control box. The advantages of this project are the product will filtered the water as remain as natural highland watering resources while using the solar energy to accomplished green technology application.展开更多
The widely utilized high efficient particulate air filters(HEPA)and electrostatic precipitator(ESP)respectively has the shortcomings of relatively high energy consumption and low filtration efficiency.In order to over...The widely utilized high efficient particulate air filters(HEPA)and electrostatic precipitator(ESP)respectively has the shortcomings of relatively high energy consumption and low filtration efficiency.In order to overcome the disadvantages of two traditional air filtration system,electrostatic assisted air filtration system(combining HEPA and ESP)has been proven to achieve high filtration efficiency and low energy consumption simultaneously.Predicting of V-I characteristics of electrostatic filtration system with configuration of“pin to filter medium to grounded device”is very essential and challenging due to the back corona phenomenon.This study utilized the back-corona based current model to predict the V-I characteristics of electrostatic system with different filter medium types and“pin-to-filter”distances.Experiments are conducted to provide data for model validation by changing filter types and locations of discharge pin.The results indicated that both of the predicted values of total discharge current and back-corona induced current agreed well with the experimentally measured data.This validated mathematical model could be used for preliminary design of electrostatic assisted filtration system with configuration of“pin to filter to grounded device”.Based on the V-I characteristics predicted by the semi-empirical model,the electrostatic filtration efficiency could be estimated.展开更多
Dust removal from pyrolytic vapors at high temperatures is an obstacle to the industrialization of the coal pyrolysis process.In this work,a granular bed with expanded perlites as filtration media was designed and int...Dust removal from pyrolytic vapors at high temperatures is an obstacle to the industrialization of the coal pyrolysis process.In this work,a granular bed with expanded perlites as filtration media was designed and integrated into a 10 t·d^(–1)coal pyrolysis facility.The testing results showed that around 97.56%dust collection efficiency was achieved.As a result,dust content in tar was significantly lowered.The pressure drop of the granular bed maintained in the range of 356 Pa to 489 Pa.The dust size in the effluent after filtration exhibited a bimodal distribution,which was attributed to the heterogeneity of the dust components.The effects of filtration bed on pyrolytic product yields were also discussed.A modified filtration model based on the macroscopic phenomenological theory was proposed to describe the performance of the granular bed.The computation results were well agreed with the experimental data.展开更多
Many phenomena in nature and technology are associated with the filtration of suspensions and colloids in porous media. Two main types of particle deposition,namely, cake filtration at the inlet and deep bed filtratio...Many phenomena in nature and technology are associated with the filtration of suspensions and colloids in porous media. Two main types of particle deposition,namely, cake filtration at the inlet and deep bed filtration throughout the entire porous medium, are studied by different models. A unified approach for the transport and deposition of particles based on the deep bed filtration model is proposed. A variable suspension flow rate, proportional to the number of free pores at the inlet of the porous medium, is considered. To model cake filtration, this flow rate is introduced into the mass balance equation of deep bed filtration. For the cake filtration without deposit erosion,the suspension flow rate decreases to zero, and the suspension does not penetrate deep into the porous medium. In the case of the cake filtration with erosion, the suspension flow rate is nonzero, and the deposit is distributed throughout the entire porous medium. An exact solution is obtained for a constant filtration function. The method of characteristics is used to construct the asymptotics of the concentration front of suspended and retained particles for a filtration function in a general form. Explicit formulae are obtained for a linear filtration function. The properties of these solutions are studied in detail.展开更多
Manufacturing process,diffusion co-efficient and areal capacity are the three main criteria for regulating thick electrodes for lithium-ion batteries(LIBs).However,simultaneously regulating these criteria for LIBs is ...Manufacturing process,diffusion co-efficient and areal capacity are the three main criteria for regulating thick electrodes for lithium-ion batteries(LIBs).However,simultaneously regulating these criteria for LIBs is desirable but remains a significant challenge.In this work,niobium pentoxide(Nb_(2)O_(5))anode and lithium iron phosphate(LiFePO_(4))cathode materials were chosen as the model materials and demonstrate that these three parameters can be simultaneously modulated by incorporation of micro-carbon fibers(MCF)and carbon nanotubes(CNT)with both Nb_(2)O_(5) and LFP via vacuum filtration approach.Both as-prepared MNC-20 anode and MLC-20 cathode achieves high reversible areal capacity of≈5.4 m A h cm^(-2)@0.1 C and outstanding Li-ion diffusion coefficients of≈10~(-8)cm~2 s~(-1)in the half-cell configuration.The assembled MNC-20‖MLC-20 full cell LIB delivers maximum energy and power densities of244.04 W h kg^(-1)and 108.86 W kg^(-1),respectively.The excellent electrochemical properties of the asprepared thick electrodes can be attributed to the highly conductive,mechanical compactness and multidimensional mutual effects of the MCF,CNT and active materials that facilitates rapid Li-ion diffusion kinetics.Furthermore,electrochemical impedance spectroscopy(EIS),symmetric cells analysis,and insitu Raman techniques clearly validates the enhanced Li-ion diffusion kinetics in the present architecture.展开更多
The development of advanced aircraft relies on high performance thermal-structural materials,and carbon/carbon com-posites(C/C)composited with ultrahigh-temperature ceramics are ideal candidates.However,the traditiona...The development of advanced aircraft relies on high performance thermal-structural materials,and carbon/carbon com-posites(C/C)composited with ultrahigh-temperature ceramics are ideal candidates.However,the traditional routes of compositing are either inefficient and expensive or lead to a non-uniform distribution of ceramics in the matrix.Compared with the traditional C/C-ZrC-SiC composites prepared by the reactive melt infiltration of ZrSi_(2),C/C-ZrB_(2)-ZrC-SiC composites prepared by the vacuum infiltration of ZrB_(2) combined with reactive melt infiltration have the higher content and more uniform distribution of the introduced ceramic phases.The mass and linear ablation rates of the C/C-ZrB_(2)-ZrC-SiC composites were respectively 68.9%and 29.7%lower than those of C/C-ZrC-SiC composites prepared by reactive melt infiltration.The ablation performance was improved because the volatilization of B_(2)O_(3),removes some of the heat,and the more uniformly distributed ZrO_(2),that helps produce a ZrO2-SiO2 continu-ous protective layer,hinders oxygen infiltration and decreases ablation.展开更多
The paper presents the results of comprehensive studies of filtration and capacitance properties of highly porous reservoir rocks of the aquifer of an underground gas storage facility.The geomechanical part of the res...The paper presents the results of comprehensive studies of filtration and capacitance properties of highly porous reservoir rocks of the aquifer of an underground gas storage facility.The geomechanical part of the research included studying the dependence of rock permeability on the stress-strain state in the vicinity of the wells,and physical modeling of the implementation of the method of increasing the permeability of the wellbore zone-the method of directional unloading of the reservoir.The digital part of the research included computed tomography(CT)-based computer analysis of the internal structure,pore space characteristics,and filtration properties before and after the tests.According to the results of physical modeling of deformation and filtration processes,it is found that the permeability of rocks before fracture depends on the stress-strain state insignificantly,and this influence is reversible.However,when downhole pressure reaches 7-8 MPa,macrocracks in the rock begin to grow,accompanied by irreversible permeability increase.Porosity,geodesic tortuosity and permeability values were obtained based on digital studies and numerical modeling.A weak degree of transversal anisotropy of the filtration properties of rocks was detected.Based on the analysis of pore size distribution,pressure field and flow velocities,high homogeneity and connectivity of the rock pore space is shown.The absence of pronounced changes in pore space characteristics and pore permeability after non-uniform triaxial loading rocks was shown.On the basis of geometrical analysis of pore space,the reasons for weak permeability anisotropy were identified.The filtration-capacitance properties obtained from the digital analysis showed very good agreement with the results of field and laboratory measurements.The physical modeling has confirmed the efficiency of application of the directional unloading method for the reservoir under study.The necessary parameters of its application were calculated:bottomhole geometry,stage of operation,stresses and pressure drawdown value.展开更多
BACKGROUND The prevalence of non-alcoholic fatty liver(NAFLD)has increased recently.Subjects with NAFLD are known to have higher chance for renal function impairment.Many past studies used traditional multiple linear ...BACKGROUND The prevalence of non-alcoholic fatty liver(NAFLD)has increased recently.Subjects with NAFLD are known to have higher chance for renal function impairment.Many past studies used traditional multiple linear regression(MLR)to identify risk factors for decreased estimated glomerular filtration rate(eGFR).However,medical research is increasingly relying on emerging machine learning(Mach-L)methods.The present study enrolled healthy women to identify factors affecting eGFR in subjects with and without NAFLD(NAFLD+,NAFLD-)and to rank their importance.AIM To uses three different Mach-L methods to identify key impact factors for eGFR in healthy women with and without NAFLD.METHODS A total of 65535 healthy female study participants were enrolled from the Taiwan MJ cohort,accounting for 32 independent variables including demographic,biochemistry and lifestyle parameters(independent variables),while eGFR was used as the dependent variable.Aside from MLR,three Mach-L methods were applied,including stochastic gradient boosting,eXtreme gradient boosting and elastic net.Errors of estimation were used to define method accuracy,where smaller degree of error indicated better model performance.RESULTS Income,albumin,eGFR,High density lipoprotein-Cholesterol,phosphorus,forced expiratory volume in one second(FEV1),and sleep time were all lower in the NAFLD+group,while other factors were all significantly higher except for smoking area.Mach-L had lower estimation errors,thus outperforming MLR.In Model 1,age,uric acid(UA),FEV1,plasma calcium level(Ca),plasma albumin level(Alb)and T-bilirubin were the most important factors in the NAFLD+group,as opposed to age,UA,FEV1,Alb,lactic dehydrogenase(LDH)and Ca for the NAFLD-group.Given the importance percentage was much higher than the 2nd important factor,we built Model 2 by removing age.CONCLUSION The eGFR were lower in the NAFLD+group compared to the NAFLD-group,with age being was the most important impact factor in both groups of healthy Chinese women,followed by LDH,UA,FEV1 and Alb.However,for the NAFLD-group,TSH and SBP were the 5th and 6th most important factors,as opposed to Ca and BF in the NAFLD+group.展开更多
BACKGROUND Aging population is a significant issue in Viet Nam and across the globe.Elderly individuals are at higher risk of chronic kidney disease(CKD),especially those with diabetes.Several studies found that the e...BACKGROUND Aging population is a significant issue in Viet Nam and across the globe.Elderly individuals are at higher risk of chronic kidney disease(CKD),especially those with diabetes.Several studies found that the estimated glomerular filtration rate(eGFR)determined using creatinine-based equations was not as accurate as that determined using cystatin C-based equations.Cystatin C-based equations may be beneficial in elderly patients with an age-associated decline in kidney function.Early determination of eGFR decline and associated factors would aid in appropriate interventions to improve kidney function in elderly patients with diabetes.AIM To determine the utility of cystatin C-based equations in early detection of eGFR decline and to explore factors associated with eGFR decline in elderly patients with diabetes.METHODS This cross-sectional study included 93 participants aged≥60 years evaluated in Can Tho University of Medicine and Pharmacy Hospital between October 2022 and July 2023,including 47 and 46 participants with and without diabetes respectively,according to the American Diabetes Association criteria for diabetes.The kappa coefficient,Student’s t,Mann-Whitney,χ2,Pearson’s correlation,multivariate logistic regression,and multiple linear regression analyses were employed.RESULTS The eGFRs were lower with the cystatin C-based equations than with the creatinine-based equations.Good agreement was found between the Modification of Diet in Renal Disease(MDRD)and CKD Epidemiology Collaboration(CKD-EPI)2021 creatinine-cystatin C equations(kappa=0.66).In the diabetes group,30%of the participants had low eGFR.Both plasma glucose and glycated hemoglobin were associated with an increased risk of eGFR decline(P<0.05)and negatively correlated with eGFR(P=0.001).By multivariate logistic regression,total cholesterol,and exercise were independently associated with low eGFR.By multiple linear regression,higher plasma glucose levels were correlated with lower eGFR(P=0.026,r=-0.366).CONCLUSION Cystatin C-based equations were superior in the early detection of a decline in eGFR,and the MDRD equation may be considered as an alternative to the CKD-EPI 2021 creatinine-cystatin C equation.Exercise,plasma glucose,and total cholesterol were independently associated with eGFR in patients with diabetes.展开更多
Particle deposition during crossflow filtration is significantly influenced by the operating conditions,in particular the permeate flux and crossflow velocity.However,there is a lack of detailed knowledge about how de...Particle deposition during crossflow filtration is significantly influenced by the operating conditions,in particular the permeate flux and crossflow velocity.However,there is a lack of detailed knowledge about how deposit layer structures and distributions depend on operating parameters.This study uses a microfluidic visualisation filtration system to examine the influence of operating conditions on the deposition process during crossflow ultrafiltration from a microscopic perspective.Increasing the permeate flux caused an increasing amount of deposition and a thicker deposit layer.Higher crossflow velocities reduced the extent of deposition.The degree of deposition varied over a range of operating conditions due to the altered hydrodynamic forces exerted on the particles,which can be examined by the deposition probability according to an existing model.Building on this,an empirical correlation between the deposition probability and volume of deposition as a function of filtration time was developed,which gave good agreement with experimental results.The effect of solution conditions was also involved in this correlation as a interaction energies.This could be useful for predicting the dynamic deposition process during crossflow filtration over a range of operating and solution conditions.展开更多
The efficiency of advanced membranes towards removal of general and specific microbes from wastewater was investigated. The treatment included a subsequent system of activated sludge, ultrafiltration (hollow fibre me...The efficiency of advanced membranes towards removal of general and specific microbes from wastewater was investigated. The treatment included a subsequent system of activated sludge, ultrafiltration (hollow fibre membranes with 100 kDa cut-off, and spiral wound membranes with 20 kDa cut-off), and RO (reverse osmosis). The removal evaluation of screened microbes present in treated wastewater showed that hollow fibre membrane rejected only 1 log (90% rejection) of the TPC (total microbial count), TC (total coliforms), and FC (faecal coliforms). A higher effectiveness was observed with spiral wound, removing 2-3 logs (99%-99.9%) of TPC and complete rejection of TC and FC. The RO system was successful in total rejection of all received bacteria. The removal evaluation of inoculated specific types of bacteria showed that the hollow membranes removed 2 logs (99%) of inoculated E. coli (10^7-10^8 cfu/mL inoculum), 2-3 logs (99%-99.9%) of Enterococus spp. (10^7-10^10 cfu/mL inoculum), 1-2 logs (90%-99%) of Salmonella (10^8-10^10 cfu/mL inoculum) and 1-2 logs (90%-99%) of Shigella (10^5-10^6 cfu/mL inoculum). The spiral wound was significantly efficient in rejecting further 3 logs of E. coil, 5 logs of Enterococus spp., 4 logs of Salmonella, and a complete rejection of all received bacteria was accomplished by RO membrane. The results indicate that Gram positive bacteria were removed much more efficiently compared to the Gram negative ones, the rationale behind such behaviour is based on cell walls elasticity.展开更多
Air-borne pollutants in particulate matter(PM)form,produced either physically during industrial processes or certain biological routes,have posed a great threat to human health.Particularly during the current COVID-19...Air-borne pollutants in particulate matter(PM)form,produced either physically during industrial processes or certain biological routes,have posed a great threat to human health.Particularly during the current COVID-19 pandemic,effective filtration of the virus is an urgent matter worldwide.In this review,we first introduce some fundamentals about PM,including its source and classification,filtration mechanisms,and evaluation parameters.Advanced filtration materials and their functions are then summarized,among which polymers and MOFs are discussed in detail together with their antibacterial performance.The discussion on the application is divided into end-of-pipe treatment and source control.Finally,we conclude this review with our prospective view on future research in this area.展开更多
AIM:To evaluate the trend of glaucoma internal filtration surgeries for inpatients between 2015 and 2021 at the Eye Hospital of Wenzhou Medical University.METHODS:A review of the medical records of inpatients who had ...AIM:To evaluate the trend of glaucoma internal filtration surgeries for inpatients between 2015 and 2021 at the Eye Hospital of Wenzhou Medical University.METHODS:A review of the medical records of inpatients who had been diagnosed with glaucoma and received antiglaucoma surgery between January 1,2015 and December 31,2021 was conducted.The glaucoma diagnosis in this study included primary open angle glaucoma,primary angleclosure glaucoma,secondary glaucoma,and paediatric glaucoma.The types of surgeries were categorised as internal filtration,external filtration,and cyclodestruction surgery based on the pathway of aqueous humor outflow.The trend of these glaucoma surgeries in the sample of patients with different types of glaucoma was then analysed.RESULTS:The number of patients hospitalised for glaucoma surgery increased yearly,from 752 in 2015 to 1373 in 2021,at the Eye Hospital of Wenzhou Medical University.Regarding the patients diagnosed with primary open angle glaucoma,internal filtration surgery increased from 27.40%of the sample to 54.40%of the sample,while external filtration surgery decreased from 71.50%to 44.20%between 2015 and 2021.For paediatric glaucoma,internal filtration surgery increased from 37.50%in 2015 to 88.20%in 2021.Whilst different types of surgeries were performed on the sample of patients with secondary glaucoma,the proportion of internal filtration surgery also showed an increase from 18.20%in 2015 to 40.90%in 2021.Meanwhile,internal filtration surgery in the patient sample with primary angle-closure glaucoma already accounted for over 70.00%in 2015,and showed a small increase by 2021.CONCLUSION:As surgical technology and surgical experience continue to elevate and improve,the range of glaucoma surgeries are correspondingly evolving.This study find that internal filtration surgeries accounted for an increasing proportion of treatments in the surgical management of glaucoma between 2015 and 2021.展开更多
A mass flow matching model(MFMM)was established for studying the stable status of solution electrospinning.The study of the solution droplet status at the needle tip focused on various combinations of applied voltages...A mass flow matching model(MFMM)was established for studying the stable status of solution electrospinning.The study of the solution droplet status at the needle tip focused on various combinations of applied voltages and injection rates to figure out their influence on steadily fabricating polyvinyl alcohol(PVA)nanofibers prepared from PVA spinning solutions with two different mass fractions(10%and 16%).The results revealed that during the stable electrospinning,the influence resulted from the change of the injection rate approximately canceled out the impact brought by adjusting the applied voltage,leading to almost the same morphology as that of the PVA nanofibers.And the mass fraction of PVA in the spinning solution dominated the structure and the diameter distribution of the electrospun nanofibers.Under stable electrospinning conditions,the composite membrane was produced by depositing PVA nanofibers on the polyethylene terephthalate(PET)nonwoven substrate for an air filtration test.Furthermore,the prepared composite membrane exhibited a high air filtration efficiency(99.97%)and a low pressure drop(120 Pa)for 300-500 nm neutralized polystyrene latex(PSL)aerosol particles,demonstrating its potential as an alternative for a variety of commercial applications in air filtration.展开更多
Organic solvent nanofiltration(OSN)membranes have a great application prospect in organic solvent separation,but the development of OSN membranes is mainly restricted by trade-off between permeability and rejection ra...Organic solvent nanofiltration(OSN)membranes have a great application prospect in organic solvent separation,but the development of OSN membranes is mainly restricted by trade-off between permeability and rejection rate.In this work,a TA/Fe^(3+)polymer was introduced into polyetherimide(PEI)ultrafiltration membranes crosslinked with hexamethylene diamine as the intermediate layer,and OSN membranes with high separation performance and solvent permeability were obtained through interfacial polymerization and solvent activation.The interlayer with high surface hydrophilicity and a fixed pore structure controlled the adsorption/diffusion of the amine monomer during interfacial polymerization,forming a smooth(average surface roughness<5.5 nm),ultra-thin(separation layer thickness reduced from 150 to 16 nm)and dense surface structure polyamide(PA)layer.The PA-Fe^(3+)_3-HDA/PEI membrane retained more than 94%of methyl blue(BS)in 0.1 g·L^(-1)BS ethanol solution at 0.6 MPa,and the ethanol permeation reached 28.56 L^(-1)·m^(-2)·h^(-1).The average flux recovery ratio(FRR)of PA-Fe^(3+)_(3)-HDA/PEI membrane was found to be 84%,which has better fouling resistance than PA-HDA/PEI membrane,and it was found to have better stability performance through different solvent immersion experiments and continuous operation in 0.1 g·L^(-1)BS ethanol solution.Compared with thin-film composite nanofiltration membranes,the PA-Fe^(3+)_(3)-HDA/PEI membrane can be manufactured from an economical and environment-friendly method and overcomes the trade-off between permeability and rejection rate,showing great application potential in organic solvent separation systems.展开更多
基金Supported by the National-Basic Research Program of China (2009CB623406), the National High Technology Research and Development Program of China (2007AA06A402) and the National Natural Science Foundation of China (20636020).
文摘This ranearch is focused on the, develonment of a simnle design model of the submerged catalysis/membrane filtration (catalysis/MF) system for phenol hydroxylation over TS-1 based on the material balance of the phenol under steady state and the reported kinetic studies. Based on the developed model, the theoretical phenol Conversions at steady state could be calculated using the kinetic parameters obtained from the previous batch experiments. The theoretical conversions are in good agreement with the experimental data obtained in the submerged catalysis/MF system within relative error of ±5%. The model can be used to determine the optimal experimental conditions to carry out the phenol hydroxylation over TS-1 in the submerged catalysis/MF system.
基金supported by the Universiti Kebangsaan Malaysia Grant(Grant No.GUP-2014-077)
文摘Drinking water is supplied through a centralized water supply system and may not be accessed by communities in rural areas of Malaysia.This study investigated the performance of a low-cost, self-prepared combined activated carbon and sand filtration(CACSF) system for roofharvested rainwater and lake water for potable use. Activated carbon was self-prepared using locally sourced coconut shell and was activated using commonly available salt rather than a high-tech procedure that requires a chemical reagent. The filtration chamber was comprised of local,readily available sand. The experiments were conducted with varying antecedent dry intervals(ADIs) of up to 15 d and lake water with varying initial chemical oxygen demand(COD) concentration. The CACSF system managed to produce effluents complying with the drinking water standards for the parameters p H, dissolved oxygen(DO), biochemical oxygen demand(BOD5), COD, total suspended solids(TSS), and ammonia nitrogen(NH_3-N). The CACSF system successfully decreased the population of Escherichia coli(E. coli) in the influents to less than 30 CFU/m L. Samples with a higher population of E. coli(that is, greater than 30 CFU/m L) did not show 100% removal. The system also showed high potential as an alternative for treated drinking water for roof-harvested rainwater and class II lake water.
基金Sponsored by the Research Funds of the Guangxi Key Laboratory of Environmental Engineering,Protection and Assessment(Grant No.0804K001)the Development Program for Outstanding Young Teachers in Harbin Institute of Technology(Grant No.HITQNJS.2008.044)
文摘The conventional fixed-bed biofilm process has disadvantages of easily blocked,high headloss and short operation cycle.For overcoming these disadvantages,a multi-stage biofilm reactor(MSBFR),in which the lightweight floating filter was dominant,was set up and operated.For detail investigation of the system when treating municipal wastewater,the succession characteristic of microbial community was analyzed by polymerase chain reaction(PCR)-Denaturing Gradient Gel Electrophoresis(DGGE)method.The results showed that the process had high efficiency to removal COD,SS and NH4+-N.The concentration of COD,SS and NH4-N in effluent were maintained lower than 40 mg/L,5 mg/L and 2 mg/L even though the concentration of COD,SS and NH4+-N in influent were 232-663 mg/L,105-245 mg/L and 23.7-62.7 mg/L,respectively,and the empty bed retention time was 3 h.Furthermore,biofilm samples taken from the column 2nd in height were analyzed by PCR-DGGE.The result of PCR-DGGE analysis showed that the microbial community had a little change in height and the dominant groups were Paracoccus sp.,Lactobacillus delbrueckii,Pseudomonas sp.and Bacteroidetes bacterium.
文摘Urbanization in developing countries often negatively impacts water re-sources by polluting surface waters. Addis Ababa, Ethiopia, is currently experiencing rapid urbanization accompanied by significant water shortages, unmanaged stormwater, and increasing river water pollution. To supplement the need for non-potable water and address stormwater runoff pollution, we constructed a low cost stormwater filtration system. The filtration system is comprised of a sedimentation area followed by three gravel grain sizes arranged horizontally from coarse to medium to fine filter media. We compared the quality of pretreatment water with post-treatment water by measuring physicochemical parameters, heavy metals and nutrients. We found that the filtration system reduced turbidity by 87%, TSS by 80%, Cu by 87% and Zn by 90%. Further, it positively increased the concentration of DO by 42%. However, the filtration system did not remove nitrates and nitrites. Implementing this system at outfalls in the rapidly expanding condominium housing areas can increase residents’ supply of non-potable water and reduce the amount of polluted stormwater entering nearby streams and rivers.
基金support through Special Basic Research Fund of China Central University(No.2011QH01)Innovative Experiment Projects for Undergraduates
文摘A filtration system used without chemical agents for the pretreatment of turbid coal mine drainage is described in this paper.The influence of different aperture sizes and different motor speeds was investigated during the study.The experimental results show that for aperture diameters of 0.4,0.6,or 0.8 mm smaller apertures provide more complete filtration.Rotations of 12,20,28,or 40 r/min show that higher speeds give more efficient filtration.Suspended solids decreased in both particle size and concentration after the filtration.The separated slime can be directly reused as a fuel.Efficient filtration pretreatment systems for coal mine drainage were investigated and the economic feasibility is analyzed in this article.
文摘The righteous book of Al-Quran mentions that the basic need of the living thing in this world is water. Resident of rural areas such as indigenous people will tap the highland aquatic resources as the main foundation for water. The reservoir is built on the top of hilly area to collect water before it discharges through a pipe system that uses the force of gravity to go down to the settlements. However, the filtration system frequently clogs and requires the occupants to climb up the reservoir hill for cleaning process. A lot of energy and time are required to manage the irrigation systems. Thus, an innovation system has been conducted as the filters will be cleaned automatically using solar energy supply. The designs of the filters are specially designed as the filter is equipped with electric motors, washer rods, power supply units, and automatic control box. The advantages of this project are the product will filtered the water as remain as natural highland watering resources while using the solar energy to accomplished green technology application.
基金The authors would like to acknowledge the coordinated support from Natural Science Foundation of China(Grant No.51808138,51778385,51878442).
文摘The widely utilized high efficient particulate air filters(HEPA)and electrostatic precipitator(ESP)respectively has the shortcomings of relatively high energy consumption and low filtration efficiency.In order to overcome the disadvantages of two traditional air filtration system,electrostatic assisted air filtration system(combining HEPA and ESP)has been proven to achieve high filtration efficiency and low energy consumption simultaneously.Predicting of V-I characteristics of electrostatic filtration system with configuration of“pin to filter medium to grounded device”is very essential and challenging due to the back corona phenomenon.This study utilized the back-corona based current model to predict the V-I characteristics of electrostatic system with different filter medium types and“pin-to-filter”distances.Experiments are conducted to provide data for model validation by changing filter types and locations of discharge pin.The results indicated that both of the predicted values of total discharge current and back-corona induced current agreed well with the experimentally measured data.This validated mathematical model could be used for preliminary design of electrostatic assisted filtration system with configuration of“pin to filter to grounded device”.Based on the V-I characteristics predicted by the semi-empirical model,the electrostatic filtration efficiency could be estimated.
基金financial support from the National Key Research and Development Program of China(2018YFB0605003).
文摘Dust removal from pyrolytic vapors at high temperatures is an obstacle to the industrialization of the coal pyrolysis process.In this work,a granular bed with expanded perlites as filtration media was designed and integrated into a 10 t·d^(–1)coal pyrolysis facility.The testing results showed that around 97.56%dust collection efficiency was achieved.As a result,dust content in tar was significantly lowered.The pressure drop of the granular bed maintained in the range of 356 Pa to 489 Pa.The dust size in the effluent after filtration exhibited a bimodal distribution,which was attributed to the heterogeneity of the dust components.The effects of filtration bed on pyrolytic product yields were also discussed.A modified filtration model based on the macroscopic phenomenological theory was proposed to describe the performance of the granular bed.The computation results were well agreed with the experimental data.
文摘Many phenomena in nature and technology are associated with the filtration of suspensions and colloids in porous media. Two main types of particle deposition,namely, cake filtration at the inlet and deep bed filtration throughout the entire porous medium, are studied by different models. A unified approach for the transport and deposition of particles based on the deep bed filtration model is proposed. A variable suspension flow rate, proportional to the number of free pores at the inlet of the porous medium, is considered. To model cake filtration, this flow rate is introduced into the mass balance equation of deep bed filtration. For the cake filtration without deposit erosion,the suspension flow rate decreases to zero, and the suspension does not penetrate deep into the porous medium. In the case of the cake filtration with erosion, the suspension flow rate is nonzero, and the deposit is distributed throughout the entire porous medium. An exact solution is obtained for a constant filtration function. The method of characteristics is used to construct the asymptotics of the concentration front of suspended and retained particles for a filtration function in a general form. Explicit formulae are obtained for a linear filtration function. The properties of these solutions are studied in detail.
基金supported by the Science and Technology Innovation Program of Hunan Province(2022WZ1012)the Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy(2020CB1007)the Natural Science Foundation of Guangzhou(202201020147)。
文摘Manufacturing process,diffusion co-efficient and areal capacity are the three main criteria for regulating thick electrodes for lithium-ion batteries(LIBs).However,simultaneously regulating these criteria for LIBs is desirable but remains a significant challenge.In this work,niobium pentoxide(Nb_(2)O_(5))anode and lithium iron phosphate(LiFePO_(4))cathode materials were chosen as the model materials and demonstrate that these three parameters can be simultaneously modulated by incorporation of micro-carbon fibers(MCF)and carbon nanotubes(CNT)with both Nb_(2)O_(5) and LFP via vacuum filtration approach.Both as-prepared MNC-20 anode and MLC-20 cathode achieves high reversible areal capacity of≈5.4 m A h cm^(-2)@0.1 C and outstanding Li-ion diffusion coefficients of≈10~(-8)cm~2 s~(-1)in the half-cell configuration.The assembled MNC-20‖MLC-20 full cell LIB delivers maximum energy and power densities of244.04 W h kg^(-1)and 108.86 W kg^(-1),respectively.The excellent electrochemical properties of the asprepared thick electrodes can be attributed to the highly conductive,mechanical compactness and multidimensional mutual effects of the MCF,CNT and active materials that facilitates rapid Li-ion diffusion kinetics.Furthermore,electrochemical impedance spectroscopy(EIS),symmetric cells analysis,and insitu Raman techniques clearly validates the enhanced Li-ion diffusion kinetics in the present architecture.
文摘The development of advanced aircraft relies on high performance thermal-structural materials,and carbon/carbon com-posites(C/C)composited with ultrahigh-temperature ceramics are ideal candidates.However,the traditional routes of compositing are either inefficient and expensive or lead to a non-uniform distribution of ceramics in the matrix.Compared with the traditional C/C-ZrC-SiC composites prepared by the reactive melt infiltration of ZrSi_(2),C/C-ZrB_(2)-ZrC-SiC composites prepared by the vacuum infiltration of ZrB_(2) combined with reactive melt infiltration have the higher content and more uniform distribution of the introduced ceramic phases.The mass and linear ablation rates of the C/C-ZrB_(2)-ZrC-SiC composites were respectively 68.9%and 29.7%lower than those of C/C-ZrC-SiC composites prepared by reactive melt infiltration.The ablation performance was improved because the volatilization of B_(2)O_(3),removes some of the heat,and the more uniformly distributed ZrO_(2),that helps produce a ZrO2-SiO2 continu-ous protective layer,hinders oxygen infiltration and decreases ablation.
基金supported by the Russian Science Foundation(Grant No.22-11-00273).
文摘The paper presents the results of comprehensive studies of filtration and capacitance properties of highly porous reservoir rocks of the aquifer of an underground gas storage facility.The geomechanical part of the research included studying the dependence of rock permeability on the stress-strain state in the vicinity of the wells,and physical modeling of the implementation of the method of increasing the permeability of the wellbore zone-the method of directional unloading of the reservoir.The digital part of the research included computed tomography(CT)-based computer analysis of the internal structure,pore space characteristics,and filtration properties before and after the tests.According to the results of physical modeling of deformation and filtration processes,it is found that the permeability of rocks before fracture depends on the stress-strain state insignificantly,and this influence is reversible.However,when downhole pressure reaches 7-8 MPa,macrocracks in the rock begin to grow,accompanied by irreversible permeability increase.Porosity,geodesic tortuosity and permeability values were obtained based on digital studies and numerical modeling.A weak degree of transversal anisotropy of the filtration properties of rocks was detected.Based on the analysis of pore size distribution,pressure field and flow velocities,high homogeneity and connectivity of the rock pore space is shown.The absence of pronounced changes in pore space characteristics and pore permeability after non-uniform triaxial loading rocks was shown.On the basis of geometrical analysis of pore space,the reasons for weak permeability anisotropy were identified.The filtration-capacitance properties obtained from the digital analysis showed very good agreement with the results of field and laboratory measurements.The physical modeling has confirmed the efficiency of application of the directional unloading method for the reservoir under study.The necessary parameters of its application were calculated:bottomhole geometry,stage of operation,stresses and pressure drawdown value.
基金Supported by the Kaohsiung Armed Forces General Hospital.
文摘BACKGROUND The prevalence of non-alcoholic fatty liver(NAFLD)has increased recently.Subjects with NAFLD are known to have higher chance for renal function impairment.Many past studies used traditional multiple linear regression(MLR)to identify risk factors for decreased estimated glomerular filtration rate(eGFR).However,medical research is increasingly relying on emerging machine learning(Mach-L)methods.The present study enrolled healthy women to identify factors affecting eGFR in subjects with and without NAFLD(NAFLD+,NAFLD-)and to rank their importance.AIM To uses three different Mach-L methods to identify key impact factors for eGFR in healthy women with and without NAFLD.METHODS A total of 65535 healthy female study participants were enrolled from the Taiwan MJ cohort,accounting for 32 independent variables including demographic,biochemistry and lifestyle parameters(independent variables),while eGFR was used as the dependent variable.Aside from MLR,three Mach-L methods were applied,including stochastic gradient boosting,eXtreme gradient boosting and elastic net.Errors of estimation were used to define method accuracy,where smaller degree of error indicated better model performance.RESULTS Income,albumin,eGFR,High density lipoprotein-Cholesterol,phosphorus,forced expiratory volume in one second(FEV1),and sleep time were all lower in the NAFLD+group,while other factors were all significantly higher except for smoking area.Mach-L had lower estimation errors,thus outperforming MLR.In Model 1,age,uric acid(UA),FEV1,plasma calcium level(Ca),plasma albumin level(Alb)and T-bilirubin were the most important factors in the NAFLD+group,as opposed to age,UA,FEV1,Alb,lactic dehydrogenase(LDH)and Ca for the NAFLD-group.Given the importance percentage was much higher than the 2nd important factor,we built Model 2 by removing age.CONCLUSION The eGFR were lower in the NAFLD+group compared to the NAFLD-group,with age being was the most important impact factor in both groups of healthy Chinese women,followed by LDH,UA,FEV1 and Alb.However,for the NAFLD-group,TSH and SBP were the 5th and 6th most important factors,as opposed to Ca and BF in the NAFLD+group.
文摘BACKGROUND Aging population is a significant issue in Viet Nam and across the globe.Elderly individuals are at higher risk of chronic kidney disease(CKD),especially those with diabetes.Several studies found that the estimated glomerular filtration rate(eGFR)determined using creatinine-based equations was not as accurate as that determined using cystatin C-based equations.Cystatin C-based equations may be beneficial in elderly patients with an age-associated decline in kidney function.Early determination of eGFR decline and associated factors would aid in appropriate interventions to improve kidney function in elderly patients with diabetes.AIM To determine the utility of cystatin C-based equations in early detection of eGFR decline and to explore factors associated with eGFR decline in elderly patients with diabetes.METHODS This cross-sectional study included 93 participants aged≥60 years evaluated in Can Tho University of Medicine and Pharmacy Hospital between October 2022 and July 2023,including 47 and 46 participants with and without diabetes respectively,according to the American Diabetes Association criteria for diabetes.The kappa coefficient,Student’s t,Mann-Whitney,χ2,Pearson’s correlation,multivariate logistic regression,and multiple linear regression analyses were employed.RESULTS The eGFRs were lower with the cystatin C-based equations than with the creatinine-based equations.Good agreement was found between the Modification of Diet in Renal Disease(MDRD)and CKD Epidemiology Collaboration(CKD-EPI)2021 creatinine-cystatin C equations(kappa=0.66).In the diabetes group,30%of the participants had low eGFR.Both plasma glucose and glycated hemoglobin were associated with an increased risk of eGFR decline(P<0.05)and negatively correlated with eGFR(P=0.001).By multivariate logistic regression,total cholesterol,and exercise were independently associated with low eGFR.By multiple linear regression,higher plasma glucose levels were correlated with lower eGFR(P=0.026,r=-0.366).CONCLUSION Cystatin C-based equations were superior in the early detection of a decline in eGFR,and the MDRD equation may be considered as an alternative to the CKD-EPI 2021 creatinine-cystatin C equation.Exercise,plasma glucose,and total cholesterol were independently associated with eGFR in patients with diabetes.
文摘Particle deposition during crossflow filtration is significantly influenced by the operating conditions,in particular the permeate flux and crossflow velocity.However,there is a lack of detailed knowledge about how deposit layer structures and distributions depend on operating parameters.This study uses a microfluidic visualisation filtration system to examine the influence of operating conditions on the deposition process during crossflow ultrafiltration from a microscopic perspective.Increasing the permeate flux caused an increasing amount of deposition and a thicker deposit layer.Higher crossflow velocities reduced the extent of deposition.The degree of deposition varied over a range of operating conditions due to the altered hydrodynamic forces exerted on the particles,which can be examined by the deposition probability according to an existing model.Building on this,an empirical correlation between the deposition probability and volume of deposition as a function of filtration time was developed,which gave good agreement with experimental results.The effect of solution conditions was also involved in this correlation as a interaction energies.This could be useful for predicting the dynamic deposition process during crossflow filtration over a range of operating and solution conditions.
文摘The efficiency of advanced membranes towards removal of general and specific microbes from wastewater was investigated. The treatment included a subsequent system of activated sludge, ultrafiltration (hollow fibre membranes with 100 kDa cut-off, and spiral wound membranes with 20 kDa cut-off), and RO (reverse osmosis). The removal evaluation of screened microbes present in treated wastewater showed that hollow fibre membrane rejected only 1 log (90% rejection) of the TPC (total microbial count), TC (total coliforms), and FC (faecal coliforms). A higher effectiveness was observed with spiral wound, removing 2-3 logs (99%-99.9%) of TPC and complete rejection of TC and FC. The RO system was successful in total rejection of all received bacteria. The removal evaluation of inoculated specific types of bacteria showed that the hollow membranes removed 2 logs (99%) of inoculated E. coli (10^7-10^8 cfu/mL inoculum), 2-3 logs (99%-99.9%) of Enterococus spp. (10^7-10^10 cfu/mL inoculum), 1-2 logs (90%-99%) of Salmonella (10^8-10^10 cfu/mL inoculum) and 1-2 logs (90%-99%) of Shigella (10^5-10^6 cfu/mL inoculum). The spiral wound was significantly efficient in rejecting further 3 logs of E. coil, 5 logs of Enterococus spp., 4 logs of Salmonella, and a complete rejection of all received bacteria was accomplished by RO membrane. The results indicate that Gram positive bacteria were removed much more efficiently compared to the Gram negative ones, the rationale behind such behaviour is based on cell walls elasticity.
基金National Natural Science Foundation of China (22075046,51972063)Natural Science Funds for Distinguished Young Scholar of Fujian Province (2020J06038)+2 种基金Natural Science Foundation of Fujian Province (2020J01514,2019J01652,2019J01256)China Postdoctoral Science Foundation (Pre-station) (Project No.2019TQ0061)111 Project (No.D17005).
文摘Air-borne pollutants in particulate matter(PM)form,produced either physically during industrial processes or certain biological routes,have posed a great threat to human health.Particularly during the current COVID-19 pandemic,effective filtration of the virus is an urgent matter worldwide.In this review,we first introduce some fundamentals about PM,including its source and classification,filtration mechanisms,and evaluation parameters.Advanced filtration materials and their functions are then summarized,among which polymers and MOFs are discussed in detail together with their antibacterial performance.The discussion on the application is divided into end-of-pipe treatment and source control.Finally,we conclude this review with our prospective view on future research in this area.
基金Supported by the National Key Research and Development Project of China(No.2020YFC2008200)the Program for Zhejiang Leading Talent of S&T Innovation(No.2021R52012)+1 种基金Key Research and Development Projects of Zhejiang Province(No.2022C03112)the Zhejiang Provincial Program for the Cultivation of Leading Talents in Colleges and Universities(No.2020099)。
文摘AIM:To evaluate the trend of glaucoma internal filtration surgeries for inpatients between 2015 and 2021 at the Eye Hospital of Wenzhou Medical University.METHODS:A review of the medical records of inpatients who had been diagnosed with glaucoma and received antiglaucoma surgery between January 1,2015 and December 31,2021 was conducted.The glaucoma diagnosis in this study included primary open angle glaucoma,primary angleclosure glaucoma,secondary glaucoma,and paediatric glaucoma.The types of surgeries were categorised as internal filtration,external filtration,and cyclodestruction surgery based on the pathway of aqueous humor outflow.The trend of these glaucoma surgeries in the sample of patients with different types of glaucoma was then analysed.RESULTS:The number of patients hospitalised for glaucoma surgery increased yearly,from 752 in 2015 to 1373 in 2021,at the Eye Hospital of Wenzhou Medical University.Regarding the patients diagnosed with primary open angle glaucoma,internal filtration surgery increased from 27.40%of the sample to 54.40%of the sample,while external filtration surgery decreased from 71.50%to 44.20%between 2015 and 2021.For paediatric glaucoma,internal filtration surgery increased from 37.50%in 2015 to 88.20%in 2021.Whilst different types of surgeries were performed on the sample of patients with secondary glaucoma,the proportion of internal filtration surgery also showed an increase from 18.20%in 2015 to 40.90%in 2021.Meanwhile,internal filtration surgery in the patient sample with primary angle-closure glaucoma already accounted for over 70.00%in 2015,and showed a small increase by 2021.CONCLUSION:As surgical technology and surgical experience continue to elevate and improve,the range of glaucoma surgeries are correspondingly evolving.This study find that internal filtration surgeries accounted for an increasing proportion of treatments in the surgical management of glaucoma between 2015 and 2021.
文摘A mass flow matching model(MFMM)was established for studying the stable status of solution electrospinning.The study of the solution droplet status at the needle tip focused on various combinations of applied voltages and injection rates to figure out their influence on steadily fabricating polyvinyl alcohol(PVA)nanofibers prepared from PVA spinning solutions with two different mass fractions(10%and 16%).The results revealed that during the stable electrospinning,the influence resulted from the change of the injection rate approximately canceled out the impact brought by adjusting the applied voltage,leading to almost the same morphology as that of the PVA nanofibers.And the mass fraction of PVA in the spinning solution dominated the structure and the diameter distribution of the electrospun nanofibers.Under stable electrospinning conditions,the composite membrane was produced by depositing PVA nanofibers on the polyethylene terephthalate(PET)nonwoven substrate for an air filtration test.Furthermore,the prepared composite membrane exhibited a high air filtration efficiency(99.97%)and a low pressure drop(120 Pa)for 300-500 nm neutralized polystyrene latex(PSL)aerosol particles,demonstrating its potential as an alternative for a variety of commercial applications in air filtration.
基金supported by grants from the National Natural Science Foundation of China (41662004)the Jiangxi Graduate Innovation Fund (YC2021-S557),China。
文摘Organic solvent nanofiltration(OSN)membranes have a great application prospect in organic solvent separation,but the development of OSN membranes is mainly restricted by trade-off between permeability and rejection rate.In this work,a TA/Fe^(3+)polymer was introduced into polyetherimide(PEI)ultrafiltration membranes crosslinked with hexamethylene diamine as the intermediate layer,and OSN membranes with high separation performance and solvent permeability were obtained through interfacial polymerization and solvent activation.The interlayer with high surface hydrophilicity and a fixed pore structure controlled the adsorption/diffusion of the amine monomer during interfacial polymerization,forming a smooth(average surface roughness<5.5 nm),ultra-thin(separation layer thickness reduced from 150 to 16 nm)and dense surface structure polyamide(PA)layer.The PA-Fe^(3+)_3-HDA/PEI membrane retained more than 94%of methyl blue(BS)in 0.1 g·L^(-1)BS ethanol solution at 0.6 MPa,and the ethanol permeation reached 28.56 L^(-1)·m^(-2)·h^(-1).The average flux recovery ratio(FRR)of PA-Fe^(3+)_(3)-HDA/PEI membrane was found to be 84%,which has better fouling resistance than PA-HDA/PEI membrane,and it was found to have better stability performance through different solvent immersion experiments and continuous operation in 0.1 g·L^(-1)BS ethanol solution.Compared with thin-film composite nanofiltration membranes,the PA-Fe^(3+)_(3)-HDA/PEI membrane can be manufactured from an economical and environment-friendly method and overcomes the trade-off between permeability and rejection rate,showing great application potential in organic solvent separation systems.