Aircraft final assembly line(AFAL)involves thousands of processes that must be completed before delivery.However,the heavy reliance on manual labor in most assembly processes affects the quality and prolongs the deliv...Aircraft final assembly line(AFAL)involves thousands of processes that must be completed before delivery.However,the heavy reliance on manual labor in most assembly processes affects the quality and prolongs the delivery time.While the advent of artificial intelligence of things(AIoT)technologies has introduced advancements in certain AFAL scenarios,systematically enhancing the intelligence level of the AFAL and promoting the widespread deployment of artificial intelligence(AI)technologies remain significant challenges.To address these challenges,we propose the intelligent and collaborative aircraft assembly(ICAA)framework,which integrates AI technologies within a cloud-edge-terminal architecture.The ICAA framework is designed to support AI-enabled applications in the AFAL,with the goal of improving assembly efficiency at both individual and multiple process levels.We analyze specific demands across various assembly scenarios and introduce corresponding AI technologies to meet these demands.The three-tier ICAA framework consists of the assembly field,edge data platform,and assembly cloud platform,facilitating the collection of heterogeneous terminal data and the deployment of AI technologies.The framework enhances assembly efficiency by reducing reliance on manual labor for individual processes and fostering collaboration across multiple processes.We provide detailed descriptions of how AI functions at each level of the framework.Furthermore,we apply the ICAA framework to a real AFAL,focusing explicitly on the flight control system testing process.This practical implementation demonstrates the effectiveness of the framework in improving assembly efficiency and promoting the adoption of AIoT technologies.展开更多
In high power laser facility for inertial confinement fusion research, final optics assembly(FOA) plays a critical role in the frequency conversion, beam focusing, color separation, beam sampling and debris shielding....In high power laser facility for inertial confinement fusion research, final optics assembly(FOA) plays a critical role in the frequency conversion, beam focusing, color separation, beam sampling and debris shielding. The design and performance of FOA in SG-II Upgrade laser facility are mainly introduced here. Due to the limited space and short focal length, a coaxial aspheric wedged focus lens is designed and applied in the FOA configuration. Then the ghost image analysis,the focus characteristic analysis, the B integral control design and the optomechanical design are carried out in the FOA design phase. In order to ensure the FOA performance, two key technologies are developed including measurement and adjustment technique of the wedged focus lens and the stray light management technique based on ground glass.Experimental results show that the design specifications including laser fluence, frequency conversion efficiency and perforation efficiency of the focus spot have been achieved, which meet the requirements of physical experiments well.展开更多
The Shenguang-II Upgrade(SG-II Up) facility is an under-construction high-power laser driver with eight beams, 24 kJ energy, 3 ns pulse duration and ultraviolet laser output, in the Shanghai Institute of Optics and Fi...The Shenguang-II Upgrade(SG-II Up) facility is an under-construction high-power laser driver with eight beams, 24 kJ energy, 3 ns pulse duration and ultraviolet laser output, in the Shanghai Institute of Optics and Fine Mechanics, China.The prototype design and experimental research of the prototype final optics assembly(FOA), which is one of the most important parts of the SG-II Up facility, have been completed on the ninth beam of the SG-II facility. Thirty-three shots were fired using 1-ω energy from 1000 to 4500 J and 3-ω energy from 500 to 2403 J with a 3 ns square pulse. During the experiments, emphasis was given to the process of optical damage and to the effects of clean-gas control. A numerical model of the FOA generated by the Integrated Computer Engineering and Manufacturing code for Computational Fluid Dynamics(ICEMCFD) demonstrated that a flux within 1–5 l s^(-1) and a 180 s period is effectual to avoid contaminant sputtering to the optics. The presence of surface ‘mooning' damage and surface spots located outside the clear aperture are induced by contaminants such as wire, silica gel and millimeter order fiber and metal.展开更多
基金supported in part by the National Natural Science Foundation of China under Grants 92167205,61933009,62025305,and 62103268.
文摘Aircraft final assembly line(AFAL)involves thousands of processes that must be completed before delivery.However,the heavy reliance on manual labor in most assembly processes affects the quality and prolongs the delivery time.While the advent of artificial intelligence of things(AIoT)technologies has introduced advancements in certain AFAL scenarios,systematically enhancing the intelligence level of the AFAL and promoting the widespread deployment of artificial intelligence(AI)technologies remain significant challenges.To address these challenges,we propose the intelligent and collaborative aircraft assembly(ICAA)framework,which integrates AI technologies within a cloud-edge-terminal architecture.The ICAA framework is designed to support AI-enabled applications in the AFAL,with the goal of improving assembly efficiency at both individual and multiple process levels.We analyze specific demands across various assembly scenarios and introduce corresponding AI technologies to meet these demands.The three-tier ICAA framework consists of the assembly field,edge data platform,and assembly cloud platform,facilitating the collection of heterogeneous terminal data and the deployment of AI technologies.The framework enhances assembly efficiency by reducing reliance on manual labor for individual processes and fostering collaboration across multiple processes.We provide detailed descriptions of how AI functions at each level of the framework.Furthermore,we apply the ICAA framework to a real AFAL,focusing explicitly on the flight control system testing process.This practical implementation demonstrates the effectiveness of the framework in improving assembly efficiency and promoting the adoption of AIoT technologies.
文摘In high power laser facility for inertial confinement fusion research, final optics assembly(FOA) plays a critical role in the frequency conversion, beam focusing, color separation, beam sampling and debris shielding. The design and performance of FOA in SG-II Upgrade laser facility are mainly introduced here. Due to the limited space and short focal length, a coaxial aspheric wedged focus lens is designed and applied in the FOA configuration. Then the ghost image analysis,the focus characteristic analysis, the B integral control design and the optomechanical design are carried out in the FOA design phase. In order to ensure the FOA performance, two key technologies are developed including measurement and adjustment technique of the wedged focus lens and the stray light management technique based on ground glass.Experimental results show that the design specifications including laser fluence, frequency conversion efficiency and perforation efficiency of the focus spot have been achieved, which meet the requirements of physical experiments well.
文摘The Shenguang-II Upgrade(SG-II Up) facility is an under-construction high-power laser driver with eight beams, 24 kJ energy, 3 ns pulse duration and ultraviolet laser output, in the Shanghai Institute of Optics and Fine Mechanics, China.The prototype design and experimental research of the prototype final optics assembly(FOA), which is one of the most important parts of the SG-II Up facility, have been completed on the ninth beam of the SG-II facility. Thirty-three shots were fired using 1-ω energy from 1000 to 4500 J and 3-ω energy from 500 to 2403 J with a 3 ns square pulse. During the experiments, emphasis was given to the process of optical damage and to the effects of clean-gas control. A numerical model of the FOA generated by the Integrated Computer Engineering and Manufacturing code for Computational Fluid Dynamics(ICEMCFD) demonstrated that a flux within 1–5 l s^(-1) and a 180 s period is effectual to avoid contaminant sputtering to the optics. The presence of surface ‘mooning' damage and surface spots located outside the clear aperture are induced by contaminants such as wire, silica gel and millimeter order fiber and metal.