In this paper, a disease transmission model with two treatment stages is proposed and analyzed. The results indicate that the basic reproduction number is a critical threshold for the prevalence of the disease. If the...In this paper, a disease transmission model with two treatment stages is proposed and analyzed. The results indicate that the basic reproduction number is a critical threshold for the prevalence of the disease. If the basic reproduction number is less than one, the disease free equilibrium is globally asymptotically stable. Otherwise, the endemic equilibrium is globally asymptotically stable. Therefore, besides the basic reproduction number, a new marker for characterizing the seriousness of the disease, named as dynamical final infective size, is proposed, which differs from traditional final size because the proposed model includes the natural birth and death. Finally, optimization strategies for limited medical resources are obtained from the perspectives of basic reproduction number and dynamical final infective size, and the real-world disease management scenarios are given based on these finding.展开更多
Pyrolysis experiments of a typical printed circuit boards has been carried out under various conditions in a laboratory installation Liquid yield of 15%~21%, gas yield of 15%~20% and solid yield of about 60% were ob...Pyrolysis experiments of a typical printed circuit boards has been carried out under various conditions in a laboratory installation Liquid yield of 15%~21%, gas yield of 15%~20% and solid yield of about 60% were obtained The liquid products had high gross calorific values that might be recycled as fuel oils after simple treatment CO, CO 2 and N 2 were the main constitutes of the gas products Using combustion method, organic carbon of 7% in the solid products could be removed Then the solid products, which contained high purity fiberglass and CaCO 3, could be reused as filling materials in the process of SMC production In addition, the effects of final pyrolysis temperature (FPT) and particle size on pyrolysis products had been investigated The yield of gas products will be increased under high temperature and with powder展开更多
In this work, we developed a theoretical framework leading to misclassification of the final size epidemic data for the stochastic SIR (Susceptible-In</span></span><span style="font-family:Verdana;...In this work, we developed a theoretical framework leading to misclassification of the final size epidemic data for the stochastic SIR (Susceptible-In</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">fective</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-Removed), household epidemic model, with false negative and false positive misclassification probabilities. Maximum likelihood based algorithm is then employed for its inference. We then analyzed and compared the estimates of the two dimensional model with those of the three and four dimensional models associated with misclassified final size data over arrange of theoretical parameters, local and global infection rates and corresponding proportion infected in the permissible region, away from its boundaries and misclassification probabilities.</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">The adequacies of the three models to the final size data are examined. The four and three-dimensional models are found to outperform the two dimensional model on misclassified final size data.展开更多
文摘In this paper, a disease transmission model with two treatment stages is proposed and analyzed. The results indicate that the basic reproduction number is a critical threshold for the prevalence of the disease. If the basic reproduction number is less than one, the disease free equilibrium is globally asymptotically stable. Otherwise, the endemic equilibrium is globally asymptotically stable. Therefore, besides the basic reproduction number, a new marker for characterizing the seriousness of the disease, named as dynamical final infective size, is proposed, which differs from traditional final size because the proposed model includes the natural birth and death. Finally, optimization strategies for limited medical resources are obtained from the perspectives of basic reproduction number and dynamical final infective size, and the real-world disease management scenarios are given based on these finding.
文摘Pyrolysis experiments of a typical printed circuit boards has been carried out under various conditions in a laboratory installation Liquid yield of 15%~21%, gas yield of 15%~20% and solid yield of about 60% were obtained The liquid products had high gross calorific values that might be recycled as fuel oils after simple treatment CO, CO 2 and N 2 were the main constitutes of the gas products Using combustion method, organic carbon of 7% in the solid products could be removed Then the solid products, which contained high purity fiberglass and CaCO 3, could be reused as filling materials in the process of SMC production In addition, the effects of final pyrolysis temperature (FPT) and particle size on pyrolysis products had been investigated The yield of gas products will be increased under high temperature and with powder
文摘In this work, we developed a theoretical framework leading to misclassification of the final size epidemic data for the stochastic SIR (Susceptible-In</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">fective</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-Removed), household epidemic model, with false negative and false positive misclassification probabilities. Maximum likelihood based algorithm is then employed for its inference. We then analyzed and compared the estimates of the two dimensional model with those of the three and four dimensional models associated with misclassified final size data over arrange of theoretical parameters, local and global infection rates and corresponding proportion infected in the permissible region, away from its boundaries and misclassification probabilities.</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">The adequacies of the three models to the final size data are examined. The four and three-dimensional models are found to outperform the two dimensional model on misclassified final size data.