Formation of copper wiring on a polyimide film by laser irradiation to a stable copper-complex film consisting of glyoxylic acid copper complex and methylamine copper complex in air has been investigated. A stable met...Formation of copper wiring on a polyimide film by laser irradiation to a stable copper-complex film consisting of glyoxylic acid copper complex and methylamine copper complex in air has been investigated. A stable metallic copper on the polyimide film was precipitated even in air. Since this copper was generated only in the laser-irradiated parts, direct patterning of copper wiring was possible. It was also found that copper was precipitated by electroless copper plating on the laser-deposited copper wiring and it was possible to thicken the copper wiring by this precipitation. The resistivity of the copper wiring was almost the same as that of the bulk of metallic copper. The developed method—combining laser irradiation to a copper-complex-coated film and electroless copper plating—enables the high-speed deposition of fine copper wiring on a polyimide film in air by a printing process, indicating an inexpensive and useful process for fabricating copper wiring without high vacuum facility and heat-treatment under inert gas.展开更多
Via material erosion in wire electrical discharge machining(WEDM),recast layers form on the surfaces of workpiece.In addition,ultra fine Wire-EDM can be usually cut once.To reduce the thickness of the recast layer as ...Via material erosion in wire electrical discharge machining(WEDM),recast layers form on the surfaces of workpiece.In addition,ultra fine Wire-EDM can be usually cut once.To reduce the thickness of the recast layer as much as possible,the wire electrical discharge-electrochemical machining(WEDCM)method was proposed,which is based on the micro conductivity of the dielectric and microelectrolytic characteristics by adjusting the no-load rate of the pulse in the machining process.Furthermore,a state discrimination and servo control system based on discharge current was designed.The experiment results of different no-load rates show that the electrolytic effects increase as the no-load rate increases,and the main machining process is spark discharge erosion with a no-load rate in the range of 10%to 80%.At 90%no-load rate,the amount of recast layer formation in the forward direction of the wire electrode is almost the same as that of electrolytic dissolution,and it can be practically processed without a recast layer.Compared with10%no-load rate,the kerf width only increases by 7.5%.展开更多
Nanodevices using the photovoltaic effect of a single nanowire have attracted growing interest. In this paper, we consider potential applications of the photovoltaic effect to optical signal coupling and optical power...Nanodevices using the photovoltaic effect of a single nanowire have attracted growing interest. In this paper, we consider potential applications of the photovoltaic effect to optical signal coupling and optical power transmission, and report on the realization of a heterojunction formed between WO2 and WO3 in a fine-wire having a diameter on the micrometer scale. Using a laser beam of 514.5 nm as a signal source, the WO2-WO3 heterojunction yields a maximum output power of up to 37.4 pico watt per heterojunction. Fast responses (less than a second) of both photovoltaic voltage and current are also observed. In addition, we demonstrate that it is a simple and effective way to adapt a commercial Raman spectrometer for the combined functions of fabrication, material characterization and photovottaic measurement of an optical signal coupler and optical power transmitter based on a fine-wire. Our results show an attractive perspective of developing nanowire or fine-wire elements for coupling optical signals into and for powering a nanoelectronic or nano-optoelectronic integrated circuit that works under the condition of preventing it from directly electrically connecting with the optical coupler.展开更多
A blinded retrospective validation study was performed in a university-based hospital in northeastern China to determine whether the breast imaging reporting and data system (BI- RADS) defines a group of patients with...A blinded retrospective validation study was performed in a university-based hospital in northeastern China to determine whether the breast imaging reporting and data system (BI- RADS) defines a group of patients with non- palpable breast lesions (NPBLs) in whom fine- wire localization biopsy (FWLB) is appropriate. We reviewed 182 consecutive patients with NPBLs who underwent FWLB. The patients’ preoperative mammograms were categorized according BI-RADS by 2 radiologists blinded to the pathological findings. The positive predictive values of BI-RADS categories 3-5 were 3.4%, 42.1%, and 76.9%, respectively. For category 4 NPBLs, the percentage of cancer for those aged < 40 years was significantly lower than those aged ≥ 40 years. For category 3 NPBLs, the percentage of precancerous lesions for those aged < 40 years was significantly lower than those aged ≥ 40 years. Chinese NPBL patients aged ≥ 40 years with category 4 mammographic findings, and all patients with category 5 findings should undergo FWLB. FWLB should be offered as a treatment option for Chinese NPBL patients aged < 40 years with category 4 findings or aged ≥ 40 years with category 3 findings.展开更多
This paper discusses about the purity of strengthened pure platinum wire and the development method of platinum micro wire, in order to solve the difficulties of low tensile strength, easy to break, and low rate of mi...This paper discusses about the purity of strengthened pure platinum wire and the development method of platinum micro wire, in order to solve the difficulties of low tensile strength, easy to break, and low rate of micro wire. And it contrasts some performance of strengthened pure platinum wire and sponge Pt wire. The researches draw a conclusion that the thermoelectric properties of strengthened pure platinum micro wire was in accordance with national standards and satisfied users' requirements.展开更多
Preparation of a glyoxylic acid copper complex and fabrication of fine copper wire by CO2 laser irradiation in air to a thin film of that complex have been investigated. Irradiating laser to the complex thin film spin...Preparation of a glyoxylic acid copper complex and fabrication of fine copper wire by CO2 laser irradiation in air to a thin film of that complex have been investigated. Irradiating laser to the complex thin film spin-coated on a glass substrate, thin film of metallic copper was fabricated in areas that were subjected to laser irradiation in air. The thickness of this thin copper film was approx. 30 to 40 nm, and as non-irradiated areas were etched and removed by a soluble solvent of the copper complex, fine copper wire with 200 μm width was formed by laser direct patterning. The resistivity of this thin copper film depended on the irradiation intensity of the laser and was 3.0 × 10–5 Ω·cm at 12 W intensity (sweep speed: 20 mm/s). This method enables the high-speed deposition of copper wiring in air by a printing process, indicating an inexpensive and useful process for fabricating copper wiring.展开更多
随着雷达性能指标不断提高、体积不断压缩,作为其关键组成部分成之一的T/R(transmitter and receiver)组件也不断向小型化和高密度方向发展.采用超高密度引线键合技术能够实现高密度射频器件封装,但也会带来键合焊点可靠性下降、电路射...随着雷达性能指标不断提高、体积不断压缩,作为其关键组成部分成之一的T/R(transmitter and receiver)组件也不断向小型化和高密度方向发展.采用超高密度引线键合技术能够实现高密度射频器件封装,但也会带来键合焊点可靠性下降、电路射频性能差等问题.针对键合线尺寸减小而引起射频性能下降的问题,采用HFSS软件探究了在0~20 GHz金带尺寸变化对电路射频性能的影响规律,并利用ANSYS Q3D和ADS软件对超细引线键合的电路进行阻抗匹配.结果表明,对于金丝和金带而言,插入微带双枝短截线匹配结构均能明显提高电路的射频性能.对于类型1结构,S21与S12的传输功率能达到-0.049 dB.对于类型2结构,S21与S12的传输功率能达到-7.245×10-5 dB,说明类型2结构下的信号传输几乎无损耗.该结果为超细引线键合技术在射频电路中的应用提供了理论指导.展开更多
采用 DSC、弯曲实验和扫描电镜分析研究了热处理工艺对医用 TiNi 合金细丝显微组织、相变温度和形状记忆效应的影响。结果表明,400℃~500℃,30 min^120 min 热处理时,随着温度的升高和时间的增长,TiNi 合金细丝中 Ti3Ni4析出相增多,相...采用 DSC、弯曲实验和扫描电镜分析研究了热处理工艺对医用 TiNi 合金细丝显微组织、相变温度和形状记忆效应的影响。结果表明,400℃~500℃,30 min^120 min 热处理时,随着温度的升高和时间的增长,TiNi 合金细丝中 Ti3Ni4析出相增多,相变温度也升高。细丝经 500℃,30 min 处理后的最大可回复应变量值最大。随弯曲变形量的增加,疲劳寿命缩短。500℃处理的试样疲劳寿命最长。展开更多
文摘Formation of copper wiring on a polyimide film by laser irradiation to a stable copper-complex film consisting of glyoxylic acid copper complex and methylamine copper complex in air has been investigated. A stable metallic copper on the polyimide film was precipitated even in air. Since this copper was generated only in the laser-irradiated parts, direct patterning of copper wiring was possible. It was also found that copper was precipitated by electroless copper plating on the laser-deposited copper wiring and it was possible to thicken the copper wiring by this precipitation. The resistivity of the copper wiring was almost the same as that of the bulk of metallic copper. The developed method—combining laser irradiation to a copper-complex-coated film and electroless copper plating—enables the high-speed deposition of fine copper wiring on a polyimide film in air by a printing process, indicating an inexpensive and useful process for fabricating copper wiring without high vacuum facility and heat-treatment under inert gas.
基金the National Natural Science Foundation of China(Nos.51575271 and 51975290)。
文摘Via material erosion in wire electrical discharge machining(WEDM),recast layers form on the surfaces of workpiece.In addition,ultra fine Wire-EDM can be usually cut once.To reduce the thickness of the recast layer as much as possible,the wire electrical discharge-electrochemical machining(WEDCM)method was proposed,which is based on the micro conductivity of the dielectric and microelectrolytic characteristics by adjusting the no-load rate of the pulse in the machining process.Furthermore,a state discrimination and servo control system based on discharge current was designed.The experiment results of different no-load rates show that the electrolytic effects increase as the no-load rate increases,and the main machining process is spark discharge erosion with a no-load rate in the range of 10%to 80%.At 90%no-load rate,the amount of recast layer formation in the forward direction of the wire electrode is almost the same as that of electrolytic dissolution,and it can be practically processed without a recast layer.Compared with10%no-load rate,the kerf width only increases by 7.5%.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. U0634002,50725206 and 50672135)the National Basic Research Program of China (Grant Nos. 2003CB314701,2007CB935501 and 2008AA03A314)the Department of Information Industry of Guangdong Province,China
文摘Nanodevices using the photovoltaic effect of a single nanowire have attracted growing interest. In this paper, we consider potential applications of the photovoltaic effect to optical signal coupling and optical power transmission, and report on the realization of a heterojunction formed between WO2 and WO3 in a fine-wire having a diameter on the micrometer scale. Using a laser beam of 514.5 nm as a signal source, the WO2-WO3 heterojunction yields a maximum output power of up to 37.4 pico watt per heterojunction. Fast responses (less than a second) of both photovoltaic voltage and current are also observed. In addition, we demonstrate that it is a simple and effective way to adapt a commercial Raman spectrometer for the combined functions of fabrication, material characterization and photovottaic measurement of an optical signal coupler and optical power transmitter based on a fine-wire. Our results show an attractive perspective of developing nanowire or fine-wire elements for coupling optical signals into and for powering a nanoelectronic or nano-optoelectronic integrated circuit that works under the condition of preventing it from directly electrically connecting with the optical coupler.
文摘A blinded retrospective validation study was performed in a university-based hospital in northeastern China to determine whether the breast imaging reporting and data system (BI- RADS) defines a group of patients with non- palpable breast lesions (NPBLs) in whom fine- wire localization biopsy (FWLB) is appropriate. We reviewed 182 consecutive patients with NPBLs who underwent FWLB. The patients’ preoperative mammograms were categorized according BI-RADS by 2 radiologists blinded to the pathological findings. The positive predictive values of BI-RADS categories 3-5 were 3.4%, 42.1%, and 76.9%, respectively. For category 4 NPBLs, the percentage of cancer for those aged < 40 years was significantly lower than those aged ≥ 40 years. For category 3 NPBLs, the percentage of precancerous lesions for those aged < 40 years was significantly lower than those aged ≥ 40 years. Chinese NPBL patients aged ≥ 40 years with category 4 mammographic findings, and all patients with category 5 findings should undergo FWLB. FWLB should be offered as a treatment option for Chinese NPBL patients aged < 40 years with category 4 findings or aged ≥ 40 years with category 3 findings.
文摘This paper discusses about the purity of strengthened pure platinum wire and the development method of platinum micro wire, in order to solve the difficulties of low tensile strength, easy to break, and low rate of micro wire. And it contrasts some performance of strengthened pure platinum wire and sponge Pt wire. The researches draw a conclusion that the thermoelectric properties of strengthened pure platinum micro wire was in accordance with national standards and satisfied users' requirements.
文摘Preparation of a glyoxylic acid copper complex and fabrication of fine copper wire by CO2 laser irradiation in air to a thin film of that complex have been investigated. Irradiating laser to the complex thin film spin-coated on a glass substrate, thin film of metallic copper was fabricated in areas that were subjected to laser irradiation in air. The thickness of this thin copper film was approx. 30 to 40 nm, and as non-irradiated areas were etched and removed by a soluble solvent of the copper complex, fine copper wire with 200 μm width was formed by laser direct patterning. The resistivity of this thin copper film depended on the irradiation intensity of the laser and was 3.0 × 10–5 Ω·cm at 12 W intensity (sweep speed: 20 mm/s). This method enables the high-speed deposition of copper wiring in air by a printing process, indicating an inexpensive and useful process for fabricating copper wiring.
文摘采用 DSC、弯曲实验和扫描电镜分析研究了热处理工艺对医用 TiNi 合金细丝显微组织、相变温度和形状记忆效应的影响。结果表明,400℃~500℃,30 min^120 min 热处理时,随着温度的升高和时间的增长,TiNi 合金细丝中 Ti3Ni4析出相增多,相变温度也升高。细丝经 500℃,30 min 处理后的最大可回复应变量值最大。随弯曲变形量的增加,疲劳寿命缩短。500℃处理的试样疲劳寿命最长。