A thermo-insensitive pale green leaf mutant (pgl2) was isolated from T-DNA inserted transgenic lines of rice (Oryza sativa L. subsp, japonica cv. Nipponbare). Genetic analysis indicated that the phenotype was caus...A thermo-insensitive pale green leaf mutant (pgl2) was isolated from T-DNA inserted transgenic lines of rice (Oryza sativa L. subsp, japonica cv. Nipponbare). Genetic analysis indicated that the phenotype was caused by a recessive mutation in a single nuclear-encoded gene. To map the PGL2gene, an F2 population was constructed by crossing the mutant with Longtefu (Oryza sativa L. subsp, indica). The PGL2 locus was roughly linked to SSR marker RM331 on chromosome 8. To finely map the gene, 14 new InDel markers were developed around the marker, and PGL2 was further mapped to a 2.37 Mb centromeric region. Analysis on chlorophyll contents of leaves showed that there was no obvious difference between the mutant and the wild type in total chlorophyll (Chl) content, while the ratio of Chl a / Chl b in the mutant was only about 1, which was distinctly lower than that in the wild type, suggesting that the PGL2 gene was related to the conversion between Chl a and Chl b. Moreover, the method of primer design around the centromeric region was discussed, which would provide insight into fine mapping of the functional genes in plant centromeres.展开更多
Seven residual heterozygous lines (RHLs) displaying different genotypic compositions in the genomic region covering probable locations of C (Chromogen for anthocyanin) gene on the short arm of rice chromosome 6 we...Seven residual heterozygous lines (RHLs) displaying different genotypic compositions in the genomic region covering probable locations of C (Chromogen for anthocyanin) gene on the short arm of rice chromosome 6 were selected from the progenies of the indica cross Zhenshan 97B/Milyang 46. Seeds were harvested from each of the seven plants, and the resultant F2:3 populations were used for fine mapping of C gene. It was shown in the populations that the apiculus coloration matched to basal leaf sheath coloration in each plant. By relating the coloration performances of the populations with the genotypic compositions of the RHLs, the C locus was located between rice SSR markers RM314 and RM253. By using a total of 1279 F2:3 individuals from two populations showing coloration segregation, the C locus was then located between RM111 and RM253, with genetic distances of 0.7 cM to RM111 and 0.4 cM to RM253. Twenty-two recombinants found in the two populations were assayed with seven more markers located between RM111 and RM253, including six SSR markers and one marker for the C gene candidate, OsCl. The C locus was delimited to a 59.3-kb region in which OsC1 was located.展开更多
Cotton,the most important natural fiber crop in the world,is a mainstay in China's economy.However,for over two decades,cotton yields both in China and U.S.have been at a plateau.
The aim of our present study was to construct genetic structure and relationships among Chinese fine-wool sheep breeds. 46 individuals from 25 breeds or strains were genotyped based on the Illumina Ovine 50K SNP array...The aim of our present study was to construct genetic structure and relationships among Chinese fine-wool sheep breeds. 46 individuals from 25 breeds or strains were genotyped based on the Illumina Ovine 50K SNP array. Meanwhile, genetic variations among 482 individuals from 9 populations were genotyped with 10 microsatellites. In this study, we found high genetic polymorphisms for the microsatellites, while 7 loci in the Chinese superfine Merino strain (Xinjiang types) (CMS) and 5 loci in Gansu alpine superfine-wool sheep strain (GSS) groups were found deviated from Hardy-Weinberg equilibrium (HWE). Genetic drift FsT=0.019 (P〈0.001) and high gene flows were detected in all the 7 fine-wool sheep populations. Phylogenetic analysis showed fine-wool sheep populations were clustered in a group independent from the Chinese indigenous breeds such that the 7 fine-wool sheep clustered distinct from Liangshan semifine-wool sheep (LS) and Hu sheep (HY) reflected by different population differentiation analyses. Overall, our findings suggested that all fine-wool sheep populations have close genetic relationship, which is consistent with their breeding progress. These populations, therefore, can be regarded as open-breeding populations with high levels of gene flows. Furthermore, the two superfine-wool strains, viz., CMS and GSS, might be formed by strong artificial selection and with frequent introduction of Australian Merino. Our results can assist in breeding of superfine-wool sheep and provide guidance for the cultivation of new fine-wool sheep breeds with different breeding objectives.展开更多
The glume is an organ of the maize spikelet and plays important roles in anther and kernel development.Vestigial glume1(Vg1)is a classic mutant associated with ligule and glume development.Here we report the phenotypi...The glume is an organ of the maize spikelet and plays important roles in anther and kernel development.Vestigial glume1(Vg1)is a classic mutant associated with ligule and glume development.Here we report the phenotypic characterization,fine mapping,and candidate gene analysis of the Vg1 mutant.Vg1 is a semi-dominant and pleiotropic gene,and also affects plant height,ear height,and tassel length.Vg1 ligule degeneration begins at the first leaf,and the Vg1 tassel and ear can be distinguished from those of wild-type plants when their lengths reach respectively 55 mm and 51 mm.Using a BC3 mapping population of 11,445 plants,we delimited the Vg1 functional site to an interval of 7.4 kb,flanked by the markers InDelLM and CRM6.A putative cyclopropane fatty-acid synthase gene(ZmCPA-FAS1)was hypothesized to underlie the mutant phenotype.We detected a Helitron insertion in the sixth intron of ZmCPAFAS1.Its presence caused abnormal alternative splicing of ZmCPA-FAS1 that conferred new characteristics on the Vg1 mutant.These findings are a basis for further discovery of the molecularmechanism underlying glume development and a potential guide formaize breeding of small-glume varieties,especially sweet corn breeding.展开更多
A mutant of panicle differentiation in rice called non-panicle (nop) was discovered in the progeny of a cross between 93-11 and Nipponbare. The mutant exhibits normal plant morphology but has apparently few tillers....A mutant of panicle differentiation in rice called non-panicle (nop) was discovered in the progeny of a cross between 93-11 and Nipponbare. The mutant exhibits normal plant morphology but has apparently few tillers. The most striking change in nop is that its panicle differentiation is blocked, with masses of fluffy bract nodes generate from the positions where rachis branches normally develop in wild-type plants. Genetic analysis suggests that nop is controlled by a single recessive gene, which is temporarily named Nop(t). Based on its mutant phenotype, Nop(t) represents a key gene controlling the initiation of inflorescence differentiation, By using simple sequence repeat markers and sequence tagged site markers, Nop(t) gene was fine mapped in a 102-kb interval on the long arm of chromosome 6. These results will facilitate the positional cloning and functional studies of the gene.展开更多
旨在利用全基因组关联分析探寻敖汉细毛羊羊毛性状新的分子标记和候选基因。本研究采集1~2周岁的健康敖汉细毛羊耳组织与羊毛作为试验素材,其中,母羊248只,公羊81只,总计329只。羊毛进行性状测定(包括纤维直径、自然长度、伸直长度、伸...旨在利用全基因组关联分析探寻敖汉细毛羊羊毛性状新的分子标记和候选基因。本研究采集1~2周岁的健康敖汉细毛羊耳组织与羊毛作为试验素材,其中,母羊248只,公羊81只,总计329只。羊毛进行性状测定(包括纤维直径、自然长度、伸直长度、伸直率),并对表型数据进行描述性统计和相关性分析。利用绵羊40K液相SNP芯片对全部个体进行基因分型。使用Plink 1.07软件对芯片数据进行质控,使用GCTA软件和PopLDdecay软件对质控数据进行群体结构分析。利用GMEMA混合线性模型对4种羊毛性状进行了全基因组关联分析(genomewide association study,GWAS),利用在线软件对候选基因进行GO和KEGG富集分析。质控后得到329只个体的30079个SNPs位点用于后续分析。通过GWAS分析筛选出4个在全基因组上显著相关的SNPs位点可能影响羊毛经济性状,分别位于1号、6号及8号染色体上。筛选出9个在染色体水平上显著相关的SNPs位点可能对羊毛性状具有潜在意义,分别位于3、5、8、11、18、21、22、25号染色体,寻找到39个可能影响羊毛性状的候选基因。本研究结果为后续探究敖汉细毛羊羊毛性状的遗传机制及分子育种标记开发提供重要参考。展开更多
文摘A thermo-insensitive pale green leaf mutant (pgl2) was isolated from T-DNA inserted transgenic lines of rice (Oryza sativa L. subsp, japonica cv. Nipponbare). Genetic analysis indicated that the phenotype was caused by a recessive mutation in a single nuclear-encoded gene. To map the PGL2gene, an F2 population was constructed by crossing the mutant with Longtefu (Oryza sativa L. subsp, indica). The PGL2 locus was roughly linked to SSR marker RM331 on chromosome 8. To finely map the gene, 14 new InDel markers were developed around the marker, and PGL2 was further mapped to a 2.37 Mb centromeric region. Analysis on chlorophyll contents of leaves showed that there was no obvious difference between the mutant and the wild type in total chlorophyll (Chl) content, while the ratio of Chl a / Chl b in the mutant was only about 1, which was distinctly lower than that in the wild type, suggesting that the PGL2 gene was related to the conversion between Chl a and Chl b. Moreover, the method of primer design around the centromeric region was discussed, which would provide insight into fine mapping of the functional genes in plant centromeres.
基金This work was supported by the Chinese 863 Program(Grant No.2006AA10Z1E8)the Super Rice Program of the Chinese Ministry of Agriculture(Grant No.200606)the Natural Science Foundation of Zhejiang Province(Grant No.Y304446).
文摘Seven residual heterozygous lines (RHLs) displaying different genotypic compositions in the genomic region covering probable locations of C (Chromogen for anthocyanin) gene on the short arm of rice chromosome 6 were selected from the progenies of the indica cross Zhenshan 97B/Milyang 46. Seeds were harvested from each of the seven plants, and the resultant F2:3 populations were used for fine mapping of C gene. It was shown in the populations that the apiculus coloration matched to basal leaf sheath coloration in each plant. By relating the coloration performances of the populations with the genotypic compositions of the RHLs, the C locus was located between rice SSR markers RM314 and RM253. By using a total of 1279 F2:3 individuals from two populations showing coloration segregation, the C locus was then located between RM111 and RM253, with genetic distances of 0.7 cM to RM111 and 0.4 cM to RM253. Twenty-two recombinants found in the two populations were assayed with seven more markers located between RM111 and RM253, including six SSR markers and one marker for the C gene candidate, OsCl. The C locus was delimited to a 59.3-kb region in which OsC1 was located.
基金This work is supported by the Major State Basic Research Development Program of China(2004CB117300)the National Natural Science Foundation of China (30530490)
文摘Cotton,the most important natural fiber crop in the world,is a mainstay in China's economy.However,for over two decades,cotton yields both in China and U.S.have been at a plateau.
基金sponsored by the Earmarked Fund for Modern China Wool & Cashmere Technology Research System (CARS-40-03)the National Natural Science Foundation for Young Scholars of China (31402057)Project support was provided by the ASTIP (Agricultural Science and Technology Innovation Program) for Genetic Resource and Breeding of Fine-Wool Sheep, Chinese Academy of Agricultural Sciences
文摘The aim of our present study was to construct genetic structure and relationships among Chinese fine-wool sheep breeds. 46 individuals from 25 breeds or strains were genotyped based on the Illumina Ovine 50K SNP array. Meanwhile, genetic variations among 482 individuals from 9 populations were genotyped with 10 microsatellites. In this study, we found high genetic polymorphisms for the microsatellites, while 7 loci in the Chinese superfine Merino strain (Xinjiang types) (CMS) and 5 loci in Gansu alpine superfine-wool sheep strain (GSS) groups were found deviated from Hardy-Weinberg equilibrium (HWE). Genetic drift FsT=0.019 (P〈0.001) and high gene flows were detected in all the 7 fine-wool sheep populations. Phylogenetic analysis showed fine-wool sheep populations were clustered in a group independent from the Chinese indigenous breeds such that the 7 fine-wool sheep clustered distinct from Liangshan semifine-wool sheep (LS) and Hu sheep (HY) reflected by different population differentiation analyses. Overall, our findings suggested that all fine-wool sheep populations have close genetic relationship, which is consistent with their breeding progress. These populations, therefore, can be regarded as open-breeding populations with high levels of gene flows. Furthermore, the two superfine-wool strains, viz., CMS and GSS, might be formed by strong artificial selection and with frequent introduction of Australian Merino. Our results can assist in breeding of superfine-wool sheep and provide guidance for the cultivation of new fine-wool sheep breeds with different breeding objectives.
基金supported by the Commercial Breeding Innovation of Sweet Glutinous Maize Varieties (cstc2016shms-ztzx80014)Fundamental Research Funds for the Central Universities (XDJK2018C052)the Major Project Research of Chongqing (cstc2016shms-ztzx80016, cstc2016shms-ztzx80017)
文摘The glume is an organ of the maize spikelet and plays important roles in anther and kernel development.Vestigial glume1(Vg1)is a classic mutant associated with ligule and glume development.Here we report the phenotypic characterization,fine mapping,and candidate gene analysis of the Vg1 mutant.Vg1 is a semi-dominant and pleiotropic gene,and also affects plant height,ear height,and tassel length.Vg1 ligule degeneration begins at the first leaf,and the Vg1 tassel and ear can be distinguished from those of wild-type plants when their lengths reach respectively 55 mm and 51 mm.Using a BC3 mapping population of 11,445 plants,we delimited the Vg1 functional site to an interval of 7.4 kb,flanked by the markers InDelLM and CRM6.A putative cyclopropane fatty-acid synthase gene(ZmCPA-FAS1)was hypothesized to underlie the mutant phenotype.We detected a Helitron insertion in the sixth intron of ZmCPAFAS1.Its presence caused abnormal alternative splicing of ZmCPA-FAS1 that conferred new characteristics on the Vg1 mutant.These findings are a basis for further discovery of the molecularmechanism underlying glume development and a potential guide formaize breeding of small-glume varieties,especially sweet corn breeding.
基金supported by the grants from the National Natural Science Foundation of China (Grant No.30300196 and No. 30771160)the State Key Basic Research Program of China (Grant No.2007CB10920203)the Research Program of Zhejiang Province,China
文摘A mutant of panicle differentiation in rice called non-panicle (nop) was discovered in the progeny of a cross between 93-11 and Nipponbare. The mutant exhibits normal plant morphology but has apparently few tillers. The most striking change in nop is that its panicle differentiation is blocked, with masses of fluffy bract nodes generate from the positions where rachis branches normally develop in wild-type plants. Genetic analysis suggests that nop is controlled by a single recessive gene, which is temporarily named Nop(t). Based on its mutant phenotype, Nop(t) represents a key gene controlling the initiation of inflorescence differentiation, By using simple sequence repeat markers and sequence tagged site markers, Nop(t) gene was fine mapped in a 102-kb interval on the long arm of chromosome 6. These results will facilitate the positional cloning and functional studies of the gene.
文摘旨在利用全基因组关联分析探寻敖汉细毛羊羊毛性状新的分子标记和候选基因。本研究采集1~2周岁的健康敖汉细毛羊耳组织与羊毛作为试验素材,其中,母羊248只,公羊81只,总计329只。羊毛进行性状测定(包括纤维直径、自然长度、伸直长度、伸直率),并对表型数据进行描述性统计和相关性分析。利用绵羊40K液相SNP芯片对全部个体进行基因分型。使用Plink 1.07软件对芯片数据进行质控,使用GCTA软件和PopLDdecay软件对质控数据进行群体结构分析。利用GMEMA混合线性模型对4种羊毛性状进行了全基因组关联分析(genomewide association study,GWAS),利用在线软件对候选基因进行GO和KEGG富集分析。质控后得到329只个体的30079个SNPs位点用于后续分析。通过GWAS分析筛选出4个在全基因组上显著相关的SNPs位点可能影响羊毛经济性状,分别位于1号、6号及8号染色体上。筛选出9个在染色体水平上显著相关的SNPs位点可能对羊毛性状具有潜在意义,分别位于3、5、8、11、18、21、22、25号染色体,寻找到39个可能影响羊毛性状的候选基因。本研究结果为后续探究敖汉细毛羊羊毛性状的遗传机制及分子育种标记开发提供重要参考。