China's forests cover 208.3 million ha and span a wide range of climates and a large variety of forest types, including tropical, temperate, and boreal forests. However, the variation patterns of fine root (< 2...China's forests cover 208.3 million ha and span a wide range of climates and a large variety of forest types, including tropical, temperate, and boreal forests. However, the variation patterns of fine root (< 2 mm in diameter) biomass, production, and turnover from the south to the north are unclear. This study summarizes fine root biomass (FRB), production (FRP) and turnover rate (FRT) in China's forests as reported by 140 case studies published from 1983 to 2014. The results showed that the mean values of FRB, FRP and FRT in China's forests were 278 g m(-2), 366 g m(-2) a(-1), and 1.19 a(-1), respectively. Compared with other studies at the regional or global scales, FRB in China's forests was lower, FRP was similar to estimates at the global scale, but FRT was much higher. FRB, FRP, and FRT in China's forests increased with increasing mean annual precipitation (MAP), indicating that fine root variables were likely related to MAP, rather than mean annual temperature or latitude. This is possibly due to the small variation in temperature but greater variation in precipitation during the growing season. These findings suggest that spatiotemporal variation in precipitation has a more profound impact on fine root dynamics in China's forests, and this will impact carbon and nutrient cycles driven by root turnover in the future.展开更多
The vertical distribution pattern and seasonal dynamics of fine root parameters for the apple trees of different ages (3, 10, 15, and 20 years old) on the Loess Plateau of China were studied. Soil coring method was ...The vertical distribution pattern and seasonal dynamics of fine root parameters for the apple trees of different ages (3, 10, 15, and 20 years old) on the Loess Plateau of China were studied. Soil coring method was used to determine the vertical distribution and seasonal dynamics of fine roots at different root radial distances (1.0, 1.5, and 2.0 m from the main tree trunk). The fine root biomass density (FRD), fine root length density (RLD), and specific root length (SRL), as well as soil water content and soil temperature were also measured. The FRD and RLD for the 10, 15, and 20 years old trees reached peak values in the 20-30 cm soil layer. For the 3 years old tree, the highest FRD and RLD were observed in the 10-20 cm soil layer. The FRD and RLD decreased with increased soil depth from the 10-20 or 20-30 cm soil layer for all age apple trees. The SRL declined with the increase of tree age. The FRD at the 1.0 m radial distance from the main tree trunk was higher than that at other radial distances in the 3 and 10 years old orchard. However, in the 15 and 20 years old orchards, especially the 20 years old orchard, the FRD at the 2.0 m radial distance was nearly equal to or higher than that at the 1.0 and 1.5 m radial distances. For all the root radiuses or the tree ages, the FRD, RLD, and SRL were the highest in spring and the lowest in autumn. The age of an apple tree does not affect the vertical distribution pattern but the biomass of fine roots and the SRL. Radial distance affects the root horizontal distribution of 3 and 10 years old trees but the 15 and 20 years old trees. Additionally, effects of soil temperature and soil moisture on fine root distribution or seasonal dynamics are not significant.展开更多
The aim of this study was to estimate fine root production (FP) and fine root mortality (FM) at 0-10, 10-20, and 20-30 cm soil depths using minirhizotrons in a 75-year-old Pinus densiflora Sieb. et Zucc. forest lo...The aim of this study was to estimate fine root production (FP) and fine root mortality (FM) at 0-10, 10-20, and 20-30 cm soil depths using minirhizotrons in a 75-year-old Pinus densiflora Sieb. et Zucc. forest located in Gwangneung, Korea. We developed the conversion factors (frame cm-2) of three soil depths (0.158 for 0-10 cm, 0.120 for 10-20 cm, and 0.131 for 20-30 cm) based on soil coring and minirhizotron data. FP and FM were estimated using conversion factors from March 26, 2013 to March 2, 2014. The annual FP and FM values at the 0-30 cm soil depth were 3200.2 and 2271.5 kg ha-1 yr -1, respectively. The FP estimate accounted for approximately 17 % of the total net primary production at the study site. FP was highest in summer (July 31-September 26), and FM was highest in autumn (September 27-November 29). FP was positively correlated with seasonal change in soil temperature, while FM was not related to that change. The sea- sonality of FP and FM might be linked to above-ground photosynthetic activity. Both FP and FM at the 0-10 cm depth were significantly higher than at 10-20 and 20-30 cm depths, and this resulted from the decrease in nutrient availability with increasing soil depth. The minirhizotron approach and conversion factors developed in this study will enable fast and accurate estimation of the fine root dynamics in P. densiflora forest ecosystems.展开更多
Fine roots are important in root absorption of nutrient and water,and in root turnover.Accurate definition of fine roots is a prerequisite to improved estimation of the physiological and ecological functions of forest...Fine roots are important in root absorption of nutrient and water,and in root turnover.Accurate definition of fine roots is a prerequisite to improved estimation of the physiological and ecological functions of forest ecosystems.Root development and physiological functions are reflections of root anatomical structure.In this study,the anatomical structures of different root orders were analyzed by examining paraffin sections of one-year old Fraxinus mandshurica seedlings.One-year-old F.mandshurica seedlings had over five root orders.The root anatomical structures of all orders showed more differences.First and second order roots consisted of four sections: the epidermis,cortex,pericycle,and vascular bundles.Fourth and fifth order roots were mainly composed of the skin and peripheral vascular bundles(including the xylem and phloem).Third order roots had root epidermal and cortical structures,but the quantity and integrity of the cortical cells were inferior to those of the first and second order roots,and superior to those of the fourth and fifth order roots.All the first and second order roots and some third order roots with discontinuous cork layer(〈0.4 mm in diameter),but not the fourth and fifth order roots,were the fine roots of one-year old F.mandshurica seedlings.Although they had similar diameters,different portions of root systems had different anatomical structures and therefore,vary in capacity to absorb water and nutrients.Fine roots were accurately defined by root diameter,branch orders,and anatomical structural features of one-year old F.mandshurica seedlings.展开更多
Nutrient retranslocation in trees is important in nutrient budgets and energy flows in forest ecosystems. We investigated nutrient retranslocation in the fine roots of a Manchurian Ash (Fraxinus mandshurica) and a L...Nutrient retranslocation in trees is important in nutrient budgets and energy flows in forest ecosystems. We investigated nutrient retranslocation in the fine roots of a Manchurian Ash (Fraxinus mandshurica) and a Larch (Larix olgensis) plantation in northeastern China. Nutrient retranslocation in the fine roots was investigated using three methods, specifically, nutrient concentration, the ratio of Ca to other elements (Ca/other elements ratio) and nutrient content. The method based on nutrient content proved most suitable when investigating nutrient retranslocation from fine roots of the two species. The nutrient-content-based method showed that there were retranslocations of N, P, K and Mg from the fine roots of Manchurian Ash, with retranslocation efficiencies of 13, 25, 65, and 38 %, respectively, whereas there were no Ca retranslocations. There were retranslocations of N, P, K, Ca and Mg from the fine roots of Larch, with retranslocation efficiencies of 31, 40, 52, 23 and 25 %, respectively.展开更多
Environmental heterogeneity is a constant presence in the natural world that significantly affects plant behavior at a variety of levels of complexity. In order to estimate the spatial pattern of fine root biomass in ...Environmental heterogeneity is a constant presence in the natural world that significantly affects plant behavior at a variety of levels of complexity. In order to estimate the spatial pattern of fine root biomass in the Three Gorges Reservoir Area, the spatial heterogeneity of fine root biomass in the upper layer of soils (0-10 cm) in three Mas- son pine (Pinus massoniana) stands in the Three Gorges Reservoir Area, China, was studied in 30 m x 30 m plots with geostatistical analysis. The results indicate that 1) both the live and dead fine root biomass of stand 2 were less than those of other stands, 2) the spatial variation of fine roots in the three stands was caused together by structural and ran- dom factors with moderate spatial dependence and 3) the magnitude of spatial heterogeneity of live fine roots ranked as: stand 3 〉 stand 1 〉 stand 2, while that of dead fine roots was similar in the three stands. These findings suggested that the range of spatial autocorrelation for fine root biomass varied considerably in the Three Gorges Reservoir Area, while soil properties, such as soil bulk density, organic matter and total nitrogen, may exhibit great effect on the spatial distribution of fine roots. Finally, we express our hope to be able to carry out further research on the quantitative relation- ship between the spatial heterogeneous patterns of plant and soil properties.展开更多
Disease prevention, biodiversity, productivity improvement and ecological considerations are all factors that contribute to increasing interest in mixed plantations. The objective of this study was to evaluate early g...Disease prevention, biodiversity, productivity improvement and ecological considerations are all factors that contribute to increasing interest in mixed plantations. The objective of this study was to evaluate early growth and productivity of two hybrid poplar clones, P. balsamifera x trichocarpa (PBT) and P. maximowiczii x balsamifera (PMB), one improved family of Norway spruce (Picea glauca (PA)) and one improved family of white spruce (Picea abies (PG)) growing under different spacings in monocultures and mixed plots. The plantations were established in 2003 in Abitibi-Témiscamingue, Quebec, Canada, in a split plot design with spacing as the whole plot factor (1 × 1 m, 3 × 3 m and 5 × 5 m) and mixture treatments as subplot factor (pure: PBT, PMB, PA and PG, and 1:1 mixture PBT:PA, PBT:PG, PMB:PA and PMB:PG). Results showed a beneficial effect of the hybrid poplar-spruce mixture on diameter growth for hybrid poplar clones, but not for the 5 × 5 m spacing because of the relatively young age of the plantations. Diameter growth of the spruces decreased in mixed plantings in the 1 × 1 m, while their height growth increased, resulting in similar aboveground biomass per tree across treatments. Because of the large size differences between spruces and poplars, aboveground biomass in the mixed plantings was generally less than that in pure poplar plots. Leaf nitrogen concentration for the two spruce families and hybrid poplar clone PMB was greater in mixed plots than in monocultures, while leaf nitrogen concentration of clone PBT was similar among mixture treatments. Because of its faster growth rate and greater soil resources demands, clone PMB was the only one showing an increase in leaf N with increased spacing between trees. Fine roots density was greater for both hybrid poplars than spruces. The vertical distribution of fine roots was insensitive to mixture treatment.展开更多
Horizontal and veftical distributions of fine root abundance (mass per unit ground surface arca) were investi-gated in a densely planted larch - ash -stripe - mixed tbrest on dark broxvn forest soil in northeast China...Horizontal and veftical distributions of fine root abundance (mass per unit ground surface arca) were investi-gated in a densely planted larch - ash -stripe - mixed tbrest on dark broxvn forest soil in northeast China. There was evidencefor some degree of below-ground niche partitioning (or differentiation) betmpen the two species in hoth the horizontal andvertical directions. The ash fine roots largely penetrated into the larch belt (larch Sub-community) in surttrce soil (0-20 cm),indicating a possible inductive effect of larch ecological field on ash roots, while the penetration of larch tine roots into ashbelt (ash sub-community) was much restricted- which reflected a negative influence of ash ccological tield on Iarch roots. Inthe vertical direction of marginal soil the ash tine roots were mainly distributed in topsoil with a vertical gradient similar tothat as in the internal ash sub-community. but the larch fine roots were relatively compelled to deepcr soil layers by the com-petition (or exclusion) of marginal ash trees. All the dit1brences or complemcntarity wcre considered to the result of inter-specitic competition, which was important to the coexistence of the two tbrest species and the sustainability of mixed planta-tion.展开更多
The belowground biomass is represented by coarse and fine roots. Concentrated in the superficial horizons of the soil, the fine roots play a crucial role in the functioning of a forest ecosystem. However, studies on t...The belowground biomass is represented by coarse and fine roots. Concentrated in the superficial horizons of the soil, the fine roots play a crucial role in the functioning of a forest ecosystem. However, studies on their dynamics in natural forests are almost non-existent in the Republic of Congo. Here, we estimated the biomass, production, turnover and fine root lifespan of two forest strata of a semi-deciduous forest: the <i><span style="font-family:Verdana;">Gilbertiodendron dewevrei</span></i><span style="font-family:Verdana;"> (De Wild.) J. Léonard forest (GF) and the mixed forest (MF) of land. The ingrowth cores method was used to estimate the biomass, production, turnover and lifespan of fine roots. The results of this study revealed that the biomass, production and fine root turnover of the two forest strata studied significantly decreased with increasing soil depth, with an increase in lifespan. The annual fine root biomass of GF (2284.50 ± 37.62 <img src="Edit_990c94b6-013e-4e21-90df-d1388dc0e65f.png" alt="" /></span><span style="font-family:Verdana;"> and 1034.61 ± 14.52 <img src="Edit_dff42540-5a2f-413b-8620-cb500e9961e2.png" alt="" /></span><span style="font-family:Verdana;">) was slightly lower than that of MF (2430.07 ± 40.68 <img src="Edit_66800589-8460-4c37-83b2-2df0f335d75d.png" alt="" /></span><span style="font-family:Verdana;"> and 1043.10 ± 11.75 <img src="Edit_c22f255e-d910-4b49-a6a4-033516044362.png" alt="" /></span><span style="font-family:Verdana;">) in the 0-15 cm and 15-30 cm horizons, respectively. The annual production of fine roots from these latter horizons was respectively 1300.19 ± 32.17 <img src="Edit_5482204b-8e9e-476a-907d-0865bf3a1c99.png" alt="" /></span><span style="font-family:Verdana;"> and 539.18 ± 11.55 <img src="Edit_65a2856e-5322-4fc9-b42a-3ba1176fa992.png" alt="" /></span><span style="font-family:Verdana;"> in GF and 1362.24 ± 39.59 <img src="Edit_9802e464-658d-48eb-9b57-8e746c3e8ef4.png" alt="" /></span><span style="font-family:Verdana;"> and 492.95 ± 14.38 <img src="Edit_51413fca-930c-45b9-a385-2b55d4d2bac8.png" alt="" /></span><span style="font-family:Verdana;"> in the MF. Root turnover was higher in the GF (1.68 ± 0.05 <img src="Edit_ce9d780c-6a46-46c4-aad2-653309318e29.png" alt="" /></span><span style="font-family:Verdana;"> and 1.35 ± 0.03 <img src="Edit_d66d8b7b-c608-4398-9441-e85547f03dea.png" alt="" /></span><span style="font-family:Verdana;">) than in the MF (1.57 ± 0.05 <img src="Edit_cb79094f-88a0-401c-a3e7-06eedb2cef9a.png" alt="" /></span><span style="font-family:Verdana;"> and 1.13 ± 0.02 <img src="Edit_e4f9b6d7-2e2e-44d5-8662-862b8f8ff80e.png" alt="" /></span><span style="font-family:Verdana;">). The lifespan of fine roots increased with the depth of the soil. The difference in fine root dynamics observed between the forest strata studied was influenced by the Evenness index and the above-ground biomass.</span>展开更多
[ Objective] This study aimed to explore the morphological characteristics and nutrient content of f'me roots of 2-year-old and 3-year-old Euca/yptus grand/s plantation and investigate the correlation. [ Method] Fine...[ Objective] This study aimed to explore the morphological characteristics and nutrient content of f'me roots of 2-year-old and 3-year-old Euca/yptus grand/s plantation and investigate the correlation. [ Method] Fine roots of 2-year-old and 3-year-old Eucalyptus grandis plantation were collected as experimental materials, to determine the root diameter (D), root length (L), specific root length (SRL) and contents of major nutrient elements N, P, K, Ca, Mg and C of fine roots (level 1 -5), study the morphological characteristics and major nutrient element content and investigate the correlation. [ Result] The results showed that morphological differences of fine roots ( level 1 - 5 ) of Eucalyptus grandis plantation were great with the increase of root order, to be specific, D and L increased and SRL decreased with the increasing root order; SRL, L and D of 3-year-old Eucalyptus grauclis plantation were greater than those of 2-year-old Euca/yptus grand/s plantation. Contents of N, Ca, Mg and C of fine roots of 2-year-old and 3-year-old Eucalyptus grandis plantation showed consistent orders with the increase of root order: N and Mg contents were reduced, while Ca and C contents were enhanced; P and K contents varied with different forest ages; both 2-year-old and 3-year- old Eucalyptus grandis showed an order of C 〉 K 〉 Ca (Mg) 〉 N. Major nutrient element content and morphological characteristics of Eucalyptus grand/s fine roots (level 1 -5 ) were extremely significantly correlated (P 〈0.01 ), SRL, L and D could be adopted as reference indices to evaluate nutrient status of Eucalyptus grand/s. Required nutrients and fine root morphology of Eucalyptus grandis plantation changed with the increase of forest age, and the nutrient cycling and energy flow patterns also changed; major nutrient dements in fine roots of 2-year-old and 3-year-old Eucalyptus grandis plantation transferred in a different order from the growth order, therefore N fertilizer could be applied to improve the growth of fine roots. [ Condusion] This study laid the foundation for understanding the fine root morphology and nutrient variation pattern of Eucalyptus grandis plantation and enriching the response and adaptation mechanism theory of roots to environment, pos- sessing important reference significance for the sustainable development of Eucalyptus grand/s plantation.展开更多
This study determined the effects of earthquake induced landslide on fine root mortality. It is useful to understand underground soil process after earthquake. We established 9 plots at each of non-moved and landslide...This study determined the effects of earthquake induced landslide on fine root mortality. It is useful to understand underground soil process after earthquake. We established 9 plots at each of non-moved and landslide site in Cupressus funebris and Cryptomeria fortunei forest stands near the fault belt of the Wenchuan Earthquake. Fine roots were sampled at 0 - 10 and 10 - 15 cm soil layer using aluminum cylinders (100 cm<sup>3</sup>). We found that earthquake induced landslide significantly increased fine root mortality in Cupressus funebris and Cryptomeria fortunei forest stands. Fine root biomass also decreased by landslide at 0 - 10 cm soil layer. We observed that the fine root biomass and mortality were various with forest type. There were higher fine root mortality rate (68.4%) and lower fine root biomass (0.48 t/hm<sup>2</sup>) in Cupressus funebris than the Cryptomeria fortunei soils (0.97 t/hm<sup>2</sup> and 37.4%).展开更多
基金supported by Grants from the National Key Research and Development Program of China(2016YFD06004040604)the Natural Science Foundation of Heilongjiang Province(No.C2016004)
文摘China's forests cover 208.3 million ha and span a wide range of climates and a large variety of forest types, including tropical, temperate, and boreal forests. However, the variation patterns of fine root (< 2 mm in diameter) biomass, production, and turnover from the south to the north are unclear. This study summarizes fine root biomass (FRB), production (FRP) and turnover rate (FRT) in China's forests as reported by 140 case studies published from 1983 to 2014. The results showed that the mean values of FRB, FRP and FRT in China's forests were 278 g m(-2), 366 g m(-2) a(-1), and 1.19 a(-1), respectively. Compared with other studies at the regional or global scales, FRB in China's forests was lower, FRP was similar to estimates at the global scale, but FRT was much higher. FRB, FRP, and FRT in China's forests increased with increasing mean annual precipitation (MAP), indicating that fine root variables were likely related to MAP, rather than mean annual temperature or latitude. This is possibly due to the small variation in temperature but greater variation in precipitation during the growing season. These findings suggest that spatiotemporal variation in precipitation has a more profound impact on fine root dynamics in China's forests, and this will impact carbon and nutrient cycles driven by root turnover in the future.
基金support by the National Key Technologies R&D Program of China during the 11th Five-Year period(2006BAD09B09)Foundation of Shaanxi Province Education Committee,China (09JS073)+1 种基金the Specialdized Research Fund for the Doctoral Program of Higher Education,China (SRFDP200807181008)the Key Program of Baoji University of Arts and Sciences,China (ZK0846)
文摘The vertical distribution pattern and seasonal dynamics of fine root parameters for the apple trees of different ages (3, 10, 15, and 20 years old) on the Loess Plateau of China were studied. Soil coring method was used to determine the vertical distribution and seasonal dynamics of fine roots at different root radial distances (1.0, 1.5, and 2.0 m from the main tree trunk). The fine root biomass density (FRD), fine root length density (RLD), and specific root length (SRL), as well as soil water content and soil temperature were also measured. The FRD and RLD for the 10, 15, and 20 years old trees reached peak values in the 20-30 cm soil layer. For the 3 years old tree, the highest FRD and RLD were observed in the 10-20 cm soil layer. The FRD and RLD decreased with increased soil depth from the 10-20 or 20-30 cm soil layer for all age apple trees. The SRL declined with the increase of tree age. The FRD at the 1.0 m radial distance from the main tree trunk was higher than that at other radial distances in the 3 and 10 years old orchard. However, in the 15 and 20 years old orchards, especially the 20 years old orchard, the FRD at the 2.0 m radial distance was nearly equal to or higher than that at the 1.0 and 1.5 m radial distances. For all the root radiuses or the tree ages, the FRD, RLD, and SRL were the highest in spring and the lowest in autumn. The age of an apple tree does not affect the vertical distribution pattern but the biomass of fine roots and the SRL. Radial distance affects the root horizontal distribution of 3 and 10 years old trees but the 15 and 20 years old trees. Additionally, effects of soil temperature and soil moisture on fine root distribution or seasonal dynamics are not significant.
基金supported by the Korea Ministry of Environment(2014001310008)the Korea Forest Service(S111314L100120)
文摘The aim of this study was to estimate fine root production (FP) and fine root mortality (FM) at 0-10, 10-20, and 20-30 cm soil depths using minirhizotrons in a 75-year-old Pinus densiflora Sieb. et Zucc. forest located in Gwangneung, Korea. We developed the conversion factors (frame cm-2) of three soil depths (0.158 for 0-10 cm, 0.120 for 10-20 cm, and 0.131 for 20-30 cm) based on soil coring and minirhizotron data. FP and FM were estimated using conversion factors from March 26, 2013 to March 2, 2014. The annual FP and FM values at the 0-30 cm soil depth were 3200.2 and 2271.5 kg ha-1 yr -1, respectively. The FP estimate accounted for approximately 17 % of the total net primary production at the study site. FP was highest in summer (July 31-September 26), and FM was highest in autumn (September 27-November 29). FP was positively correlated with seasonal change in soil temperature, while FM was not related to that change. The sea- sonality of FP and FM might be linked to above-ground photosynthetic activity. Both FP and FM at the 0-10 cm depth were significantly higher than at 10-20 and 20-30 cm depths, and this resulted from the decrease in nutrient availability with increasing soil depth. The minirhizotron approach and conversion factors developed in this study will enable fast and accurate estimation of the fine root dynamics in P. densiflora forest ecosystems.
基金supported by National Key Research and Development Program of China(2017YFD0600605)
文摘Fine roots are important in root absorption of nutrient and water,and in root turnover.Accurate definition of fine roots is a prerequisite to improved estimation of the physiological and ecological functions of forest ecosystems.Root development and physiological functions are reflections of root anatomical structure.In this study,the anatomical structures of different root orders were analyzed by examining paraffin sections of one-year old Fraxinus mandshurica seedlings.One-year-old F.mandshurica seedlings had over five root orders.The root anatomical structures of all orders showed more differences.First and second order roots consisted of four sections: the epidermis,cortex,pericycle,and vascular bundles.Fourth and fifth order roots were mainly composed of the skin and peripheral vascular bundles(including the xylem and phloem).Third order roots had root epidermal and cortical structures,but the quantity and integrity of the cortical cells were inferior to those of the first and second order roots,and superior to those of the fourth and fifth order roots.All the first and second order roots and some third order roots with discontinuous cork layer(〈0.4 mm in diameter),but not the fourth and fifth order roots,were the fine roots of one-year old F.mandshurica seedlings.Although they had similar diameters,different portions of root systems had different anatomical structures and therefore,vary in capacity to absorb water and nutrients.Fine roots were accurately defined by root diameter,branch orders,and anatomical structural features of one-year old F.mandshurica seedlings.
基金supported by the National Key Technology Research and Development Program(2012BAD21B0202-02)the Natural Science Foundation of Heilongjiang Province of China(C201340)the assisted project by Heilong Jiang Postdoctoral Funds for Scientific Research Initiation(LBH-Q13006)
文摘Nutrient retranslocation in trees is important in nutrient budgets and energy flows in forest ecosystems. We investigated nutrient retranslocation in the fine roots of a Manchurian Ash (Fraxinus mandshurica) and a Larch (Larix olgensis) plantation in northeastern China. Nutrient retranslocation in the fine roots was investigated using three methods, specifically, nutrient concentration, the ratio of Ca to other elements (Ca/other elements ratio) and nutrient content. The method based on nutrient content proved most suitable when investigating nutrient retranslocation from fine roots of the two species. The nutrient-content-based method showed that there were retranslocations of N, P, K and Mg from the fine roots of Manchurian Ash, with retranslocation efficiencies of 13, 25, 65, and 38 %, respectively, whereas there were no Ca retranslocations. There were retranslocations of N, P, K, Ca and Mg from the fine roots of Larch, with retranslocation efficiencies of 31, 40, 52, 23 and 25 %, respectively.
基金supported by the Special Fund of National Forestry Public Welfare of the State Forestry Administration (No.201104008)a Special Fund of the Research Institute of Forest Ecology, Environment and Protection of the Chinese Academy of Forestry, China (No. CAFRIFEEP201006)
文摘Environmental heterogeneity is a constant presence in the natural world that significantly affects plant behavior at a variety of levels of complexity. In order to estimate the spatial pattern of fine root biomass in the Three Gorges Reservoir Area, the spatial heterogeneity of fine root biomass in the upper layer of soils (0-10 cm) in three Mas- son pine (Pinus massoniana) stands in the Three Gorges Reservoir Area, China, was studied in 30 m x 30 m plots with geostatistical analysis. The results indicate that 1) both the live and dead fine root biomass of stand 2 were less than those of other stands, 2) the spatial variation of fine roots in the three stands was caused together by structural and ran- dom factors with moderate spatial dependence and 3) the magnitude of spatial heterogeneity of live fine roots ranked as: stand 3 〉 stand 1 〉 stand 2, while that of dead fine roots was similar in the three stands. These findings suggested that the range of spatial autocorrelation for fine root biomass varied considerably in the Three Gorges Reservoir Area, while soil properties, such as soil bulk density, organic matter and total nitrogen, may exhibit great effect on the spatial distribution of fine roots. Finally, we express our hope to be able to carry out further research on the quantitative relation- ship between the spatial heterogeneous patterns of plant and soil properties.
基金funded by Canada Economic Development,Quebec’s Ministry of Natural Resources and Fauna (MRNF)the Natural Sciences and Engineering Research Council of Canada through a Collaborative and Research Development grant to ADthe Program on Energy Research and Development of Natural Resources Canada
文摘Disease prevention, biodiversity, productivity improvement and ecological considerations are all factors that contribute to increasing interest in mixed plantations. The objective of this study was to evaluate early growth and productivity of two hybrid poplar clones, P. balsamifera x trichocarpa (PBT) and P. maximowiczii x balsamifera (PMB), one improved family of Norway spruce (Picea glauca (PA)) and one improved family of white spruce (Picea abies (PG)) growing under different spacings in monocultures and mixed plots. The plantations were established in 2003 in Abitibi-Témiscamingue, Quebec, Canada, in a split plot design with spacing as the whole plot factor (1 × 1 m, 3 × 3 m and 5 × 5 m) and mixture treatments as subplot factor (pure: PBT, PMB, PA and PG, and 1:1 mixture PBT:PA, PBT:PG, PMB:PA and PMB:PG). Results showed a beneficial effect of the hybrid poplar-spruce mixture on diameter growth for hybrid poplar clones, but not for the 5 × 5 m spacing because of the relatively young age of the plantations. Diameter growth of the spruces decreased in mixed plantings in the 1 × 1 m, while their height growth increased, resulting in similar aboveground biomass per tree across treatments. Because of the large size differences between spruces and poplars, aboveground biomass in the mixed plantings was generally less than that in pure poplar plots. Leaf nitrogen concentration for the two spruce families and hybrid poplar clone PMB was greater in mixed plots than in monocultures, while leaf nitrogen concentration of clone PBT was similar among mixture treatments. Because of its faster growth rate and greater soil resources demands, clone PMB was the only one showing an increase in leaf N with increased spacing between trees. Fine roots density was greater for both hybrid poplars than spruces. The vertical distribution of fine roots was insensitive to mixture treatment.
文摘Horizontal and veftical distributions of fine root abundance (mass per unit ground surface arca) were investi-gated in a densely planted larch - ash -stripe - mixed tbrest on dark broxvn forest soil in northeast China. There was evidencefor some degree of below-ground niche partitioning (or differentiation) betmpen the two species in hoth the horizontal andvertical directions. The ash fine roots largely penetrated into the larch belt (larch Sub-community) in surttrce soil (0-20 cm),indicating a possible inductive effect of larch ecological field on ash roots, while the penetration of larch tine roots into ashbelt (ash sub-community) was much restricted- which reflected a negative influence of ash ccological tield on Iarch roots. Inthe vertical direction of marginal soil the ash tine roots were mainly distributed in topsoil with a vertical gradient similar tothat as in the internal ash sub-community. but the larch fine roots were relatively compelled to deepcr soil layers by the com-petition (or exclusion) of marginal ash trees. All the dit1brences or complemcntarity wcre considered to the result of inter-specitic competition, which was important to the coexistence of the two tbrest species and the sustainability of mixed planta-tion.
文摘The belowground biomass is represented by coarse and fine roots. Concentrated in the superficial horizons of the soil, the fine roots play a crucial role in the functioning of a forest ecosystem. However, studies on their dynamics in natural forests are almost non-existent in the Republic of Congo. Here, we estimated the biomass, production, turnover and fine root lifespan of two forest strata of a semi-deciduous forest: the <i><span style="font-family:Verdana;">Gilbertiodendron dewevrei</span></i><span style="font-family:Verdana;"> (De Wild.) J. Léonard forest (GF) and the mixed forest (MF) of land. The ingrowth cores method was used to estimate the biomass, production, turnover and lifespan of fine roots. The results of this study revealed that the biomass, production and fine root turnover of the two forest strata studied significantly decreased with increasing soil depth, with an increase in lifespan. The annual fine root biomass of GF (2284.50 ± 37.62 <img src="Edit_990c94b6-013e-4e21-90df-d1388dc0e65f.png" alt="" /></span><span style="font-family:Verdana;"> and 1034.61 ± 14.52 <img src="Edit_dff42540-5a2f-413b-8620-cb500e9961e2.png" alt="" /></span><span style="font-family:Verdana;">) was slightly lower than that of MF (2430.07 ± 40.68 <img src="Edit_66800589-8460-4c37-83b2-2df0f335d75d.png" alt="" /></span><span style="font-family:Verdana;"> and 1043.10 ± 11.75 <img src="Edit_c22f255e-d910-4b49-a6a4-033516044362.png" alt="" /></span><span style="font-family:Verdana;">) in the 0-15 cm and 15-30 cm horizons, respectively. The annual production of fine roots from these latter horizons was respectively 1300.19 ± 32.17 <img src="Edit_5482204b-8e9e-476a-907d-0865bf3a1c99.png" alt="" /></span><span style="font-family:Verdana;"> and 539.18 ± 11.55 <img src="Edit_65a2856e-5322-4fc9-b42a-3ba1176fa992.png" alt="" /></span><span style="font-family:Verdana;"> in GF and 1362.24 ± 39.59 <img src="Edit_9802e464-658d-48eb-9b57-8e746c3e8ef4.png" alt="" /></span><span style="font-family:Verdana;"> and 492.95 ± 14.38 <img src="Edit_51413fca-930c-45b9-a385-2b55d4d2bac8.png" alt="" /></span><span style="font-family:Verdana;"> in the MF. Root turnover was higher in the GF (1.68 ± 0.05 <img src="Edit_ce9d780c-6a46-46c4-aad2-653309318e29.png" alt="" /></span><span style="font-family:Verdana;"> and 1.35 ± 0.03 <img src="Edit_d66d8b7b-c608-4398-9441-e85547f03dea.png" alt="" /></span><span style="font-family:Verdana;">) than in the MF (1.57 ± 0.05 <img src="Edit_cb79094f-88a0-401c-a3e7-06eedb2cef9a.png" alt="" /></span><span style="font-family:Verdana;"> and 1.13 ± 0.02 <img src="Edit_e4f9b6d7-2e2e-44d5-8662-862b8f8ff80e.png" alt="" /></span><span style="font-family:Verdana;">). The lifespan of fine roots increased with the depth of the soil. The difference in fine root dynamics observed between the forest strata studied was influenced by the Evenness index and the above-ground biomass.</span>
基金Supported by Key Project of the Education Department of Sichuan Province(09ZA079)College-level Fund of Sichuan Agricultural University(64070113)+3 种基金National Science and Technology Support Program of China(2011BAC09B05)Science and Technology Support Program of Sichuan Province(2010NZ0049)National Natural Science Foundation of China(30771717)Fund for Forest Tree Germplasm Resources in the Upper Reaches of the Yangtze River and Breeding Technology Innovation Team(00370503)
文摘[ Objective] This study aimed to explore the morphological characteristics and nutrient content of f'me roots of 2-year-old and 3-year-old Euca/yptus grand/s plantation and investigate the correlation. [ Method] Fine roots of 2-year-old and 3-year-old Eucalyptus grandis plantation were collected as experimental materials, to determine the root diameter (D), root length (L), specific root length (SRL) and contents of major nutrient elements N, P, K, Ca, Mg and C of fine roots (level 1 -5), study the morphological characteristics and major nutrient element content and investigate the correlation. [ Result] The results showed that morphological differences of fine roots ( level 1 - 5 ) of Eucalyptus grandis plantation were great with the increase of root order, to be specific, D and L increased and SRL decreased with the increasing root order; SRL, L and D of 3-year-old Eucalyptus grauclis plantation were greater than those of 2-year-old Euca/yptus grand/s plantation. Contents of N, Ca, Mg and C of fine roots of 2-year-old and 3-year-old Eucalyptus grandis plantation showed consistent orders with the increase of root order: N and Mg contents were reduced, while Ca and C contents were enhanced; P and K contents varied with different forest ages; both 2-year-old and 3-year- old Eucalyptus grandis showed an order of C 〉 K 〉 Ca (Mg) 〉 N. Major nutrient element content and morphological characteristics of Eucalyptus grand/s fine roots (level 1 -5 ) were extremely significantly correlated (P 〈0.01 ), SRL, L and D could be adopted as reference indices to evaluate nutrient status of Eucalyptus grand/s. Required nutrients and fine root morphology of Eucalyptus grandis plantation changed with the increase of forest age, and the nutrient cycling and energy flow patterns also changed; major nutrient dements in fine roots of 2-year-old and 3-year-old Eucalyptus grandis plantation transferred in a different order from the growth order, therefore N fertilizer could be applied to improve the growth of fine roots. [ Condusion] This study laid the foundation for understanding the fine root morphology and nutrient variation pattern of Eucalyptus grandis plantation and enriching the response and adaptation mechanism theory of roots to environment, pos- sessing important reference significance for the sustainable development of Eucalyptus grand/s plantation.
文摘This study determined the effects of earthquake induced landslide on fine root mortality. It is useful to understand underground soil process after earthquake. We established 9 plots at each of non-moved and landslide site in Cupressus funebris and Cryptomeria fortunei forest stands near the fault belt of the Wenchuan Earthquake. Fine roots were sampled at 0 - 10 and 10 - 15 cm soil layer using aluminum cylinders (100 cm<sup>3</sup>). We found that earthquake induced landslide significantly increased fine root mortality in Cupressus funebris and Cryptomeria fortunei forest stands. Fine root biomass also decreased by landslide at 0 - 10 cm soil layer. We observed that the fine root biomass and mortality were various with forest type. There were higher fine root mortality rate (68.4%) and lower fine root biomass (0.48 t/hm<sup>2</sup>) in Cupressus funebris than the Cryptomeria fortunei soils (0.97 t/hm<sup>2</sup> and 37.4%).